当前位置: X-MOL 学术ACS Energy Lett. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
The SURFCAT Summer School 2022: The Science of Sustainable Fuels and Chemicals
ACS Energy Letters ( IF 22.0 ) Pub Date : 2022-11-29 , DOI: 10.1021/acsenergylett.2c02416
, Jakob Kibsgaard 1 , Ib Chorkendorff 1
Affiliation  

The global transition from fossil to renewable energy sources calls for a transformative change of our society’s energy landscape. On the positive side, electricity from photovoltaics and wind turbines is already today becoming economically competitive with electricity generated from fossil sources. Since the energy output from renewable sources is electrical, everything that can be electrified should be electrified, e.g., heating using heat pumps, personal transportation using electric vehicles, etc., to minimize energy losses when one type of energy is converted into to another. However, some sectors cannot easily be electrified; perhaps most notably aviation but also parts of the marine sector and chemical industry will require high energy density chemical fuels and feedstocks. Furthermore, the intermittent nature of photovoltaics and wind turbines calls for efficient methods to store energy. While battery technologies can handle the daily intermittency, seasonal variations will likely require storage as a chemical fuel which further enables energy transport over large distances, e.g., in pipelines and tanker ships. Sustainable fuels and chemical feedstocks can already today be produced through Power-to-X processes where renewable electricity is catalytically converted into fuels and chemicals, such as hydrogen, hydrocarbons, oxygenates, and ammonia. However, the low energy efficiencies for current state-of-the-art Power-to-X processes are continued roadblocks to a wide-scale global deployment. The summer school chairman, Jakob Kibsgaard (Technical University of Denmark), pointed out in the opening session that improved catalysts hold the key to more energy efficient processes, but the development of these next-generation catalysts and processes will require substantial research efforts, which was the reason for the title of the summer school: “The Science of Sustainable Fuels and Chemicals”. The summer school (August 7–12 2022, hosted in Gilleleje, Denmark) was attended by 146 students from 18 different countries and 26 internationally recognized leading scientists as speakers within the fields of theoretical and experimental aspects of thermal catalysis, electro-catalysis, photoelectro-catalysis, and photocatalysis, with special emphasis on the surface of ideal systems and clusters/nanoparticles. The first talk of the summer school was by Jens K. Nørskov (Technical University of Denmark), who gave the grand overview of challenges in catalysis in general and emphasized the need to reduce the enormous complexity of catalytic reactions by employing scaling relations. (1) Unfavorable scaling relations between reaction intermediates set a limit on the energy efficiency of many of the current catalysts, and new catalyst design paradigms are needed. (2) One example of finding a new more favorable scaling relation relates to a new spin-mediated promotion effect. The traditional alkali promotional effect in thermal ammonia synthesis is purely electrostatic in nature. However, on magnetic materials, such as cobalt, a reduction in the spin moment gives rise to a further favorable substantial lowering of the N–N transition state energy, which provides a more optimal scaling relation. (3) A crucial process of converting renewable energy is being capable of splitting water into hydrogen and oxygen. Traditional low-temperature electrolyzers for splitting water operate either in acid or in base. However, by using a bipolar membrane, the cathode and anode electrocatalysts can operate at different local pH at steady state. Shannon Boettcher (University of Oregon, USA) introduced the concept of bipolar membranes and identified the need for catalysts in the interface between the cation-exchange and anion-exchange layers to accelerate the severely limiting water dissociation reaction. (4) Thomas F. Jaramillo (Stanford University, USA) further highlighted the use of bipolar membranes to control the transport and reactivity of impurities, especially chloride, which could enable the use of nonpotable water in electrolyzers. Jaramillo continued on the topic of upscaling water electrolysis, in particular proton exchange membrane (PEM) electrolyzers, where the current Ir-based anode catalyst for the oxygen evolution reaction (OER) presents a true bottleneck due to the limited availability. (5) RuO2 catalysts show great activity for the OER, but rapid degradation poses a major challenge. Jaramillo showed that, despite some dissolution evaluated by the stability number (S-number), (6) Ru-based pyrochlores show substantially greater stability than a standard RuO2 catalyst. (7) Yang Shao-Horn (Massachusetts Institute of Technology, USA) expanded on the topic of RuO2 for OER and provided molecular details on the active sites, and the influence of their local coordination environment on the catalytic activity by combining operando synchrotron-based surface X-ray scattering with DFT computation and surface-enhanced infrared absorption spectroscopy. (8) Characterizing electrocatalysts under working conditions was also the focus of the talk by Aliaksandr S. Bandarenka (Technical University of Munich, Germany) who showed how active electrocatalytic sites can be identified under reaction conditions using electrochemical scanning tunneling microscopy (STM) for both the hydrogen evolution reaction (9) and the oxygen evolution reaction. (10) Moving beyond water electrolysis, electrochemical conversions of CO2 and N2 are key processes of storing renewable energy as chemical fuels and making feedstock chemicals. Günter Schmid (Siemens Energy, Germany) presented very interesting fundamental studies on how Ag2Cu2O3 could be fully reduced and displayed significantly varying product distributions for respectively CO2 and CO electroreduction. (11) Schmid also showed how coupling water and CO2-to-CO electrolyzers to a fermentation module can produce butanol and hexanol, (12) and how benchtop research can be translated to the industrial scale. Pelayo García de Arquer (Institute of Photonic Sciences, Spain) showed how high-current density CO2 electrolysis can be achieved using an ionomer assembly that intersperses sulfonate-lined paths for the H2O with fluorocarbon channels for the CO2. (13) Marc T.M. Koper (Leiden University, The Netherlands) discussed electrolyte effects starting with the works of Frumkin (14) and described that the main role of metal cations is to stabilize the key CO2 intermediate during CO2 electroreduction on copper, silver, and gold electrodes. (15) Brian Seger (Technical University of Denmark) addressed how multicarbon (C2+) products not only are dependent on the local pH near the cathode surface but also strongly rely on the local CO availability. (16) Electrochemical N2 reduction to form ammonia has in recent years received great interest in the scientific community, but has unfortunately also been subject to many false-positive reports. (17) Ib Chorkendorff (Technical University of Denmark) pointed out that, to prove beyond a doubt that synthesized ammonia indeed comes from activation of N2 molecules and not from, e.g., impurities, quantitative isotope-labeled experiments using 15N2 must be performed. (18) Chorkendorff continued describing the progress in lithium-mediated nitrogen reduction and showed that small amounts of oxygen in the nitrogen stream could─counterintuitively─improve the faradaic efficiency and stability of the reaction. (19) A path for achieving current densities of 1 A/cm2 with Faradaic efficiencies beyond 70% was also reported. (20) Having hydrogen generated from water electrolysis, it is also possible to improve the already existing thermal catalytic processes and this subject was also discussed with passion. Methanol is a great platform molecule that not only can be used directly as a fuel but also as a feedstock for many chemicals, e.g., hydrocarbons or olefins using zeolite catalysts. The industrially deployed catalyst for methanol synthesis is Cu promoted by ZnO. Petra E. de Jongh (Utrecht University, The Netherlands) showed by using a weakly interacting graphitic carbon support that a large fraction of the Zn spectator species normally bound to the traditionally used oxide catalyst support can be avoided. Hence, the Zn promoter phase that is in close contact with the Cu nanoparticles under reaction conditions could be investigated using X-ray absorption near edge structures (XANES) and revealed that the Zn is present as Zn0 atoms on the Cu. (21) This result agreed well with the talk by Anders Nilsson (Stockholm University, Sweden) who showed that the active state of the copper–zinc catalyst involves surface metallic Zn–Cu alloy sites generated by the presence of CO. This was revealed using X-ray photoelectron spectroscopy (XPS) during CO2/CO hydrogenation over Zn/ZnO/Cu(211) at pressures of 180 to 500 mbar. (22) Thus, there seems to be consensus that the origin of the active site for the commercial methanol synthesis is a CuZn surface alloy. The field can now capitalize on this insight and move on to explore new catalysts in this area. Methanol-to-olefins (MTO) was part of the contribution from Unni Olsbye (University of Oslo, Norway), who showed that CO can inhibit the hydrogenation of olefins in zeotype catalysts with the AEI topology. (23) Felix Studt (Karlsruhe Institute of Technology, Germany) concluded by comparing density functional theory (DFT) calculations of reaction intermediates and transition states to highly accurate ab initio calculations, that DFT is sufficient for screening purposes on zeotype catalysts for the MTO process. (24) Converting stored chemical energy back to electricity (X-to-Power) in, e.g., fuel cells also greatly relies on catalysts to minimize energy losses. The industry standard oxygen reduction reaction (ORR) cathode catalysts in proton-exchange membrane (PEM) fuel cells are Pt-based. These catalysts are, however, susceptible to poisoning by several contaminants present in the operating media. Anthony Kucernak (Imperial College London, UK) showed that single atomic iron sites are much less susceptible to poisoning (25) and further that the density of single-atom Fe–N4 sites can be increased by preforming a carbon–nitrogen matrix using a sacrificial metal (Zn). (26) Charles Sykes (Tufts University, USA) continued on the field of single-site catalysis; more specifically on single-atom alloys (27) and demonstrated how these catalysts can be beautifully imaged by STM and be use in selective hydrogenation reactions. (28) Ulrike Diebold (Vienna University of Technology, Austria) also underlined the use of scanning probe techniques to investigate local geometry and properties of surfaces. Using noncontact atomic force microscopy (nc-AFM), the local acidity of individual surface hydroxyls on an In2O3(111) surface could be determined. (29) Furthermore, Diebold presented STM data where multiple metals could be found as single atoms in the same 2-fold site on an Fe3O4(001) support. Using temperature-programmed desorption (TPD), the CO adsorption strength on the single metal sites was found to differ from the respective metal surfaces and supported clusters. (30) Single-site catalysts were not the only intriguing structures presented. Yves Huttel (Materials Science Institute of Madrid, Spain) demonstrated how complex core@shell and core@shell@shell nanoparticles can be produced using a multiple ion cluster source with three magnetrons (31) and that adsorbing water molecules during the cluster growth process can cause the formation of core–satellite nanoparticle structures. (32) Robert Schlögl (Fritz Haber Institute of the Max Planck Society, Germany) addressed the dynamic nature of the active site when interacting with reagents and pointed out the need for operando spectro-microscopy, model systems, and theory to probe and understand this dynamic. This was exemplified with the investigation of Ag for selective oxidation of ethylene to ethylene oxide, where the combination of ultrahigh vacuum (UHV) and in situ experimental methods combined with theory revealed that the active electrophilic oxygen species is oxygen in adsorbed SO4. (33) Structure–function relations was also the topic of the contribution from Stig Helveg (Technical University of Denmark). Electron microscopy has become an indispensable tool to visualize the three-dimensional atom arrangements in nanoscale objects. However, care should be taken to avoid electron-beam-induced object alterations. Surface atoms (naturally important for catalysis) are especially prone to alterations due to their reduced coordination. Helveg introduced an analytical approach to quantitatively account for atom dynamics in 3D atomic-resolution imaging and showcased the dynamic analysis of Co–Mo–S nanocrystals. (34) Atomic-scale computational materials design was another key theme of the summer school. Jan Rossmeisl (Copenhagen University, Denmark) outlined computational methods using Bayesian optimization on a model based on DFT, which can transverse the vast compositional space of high-entropy alloys and predict the most active compositions for electrochemical reactions. (35) Tejs Vegge (Technical University of Denmark) addressed the role of artificial intelligence in discovering electrochemical materials and interfaces and showed how a neural network potential coupled with a genetic algorithm can provide in insight into the structural stability of Pt–Ni nanoalloys. (36) While most talks centered on thermal- and electrocatalysis, other technologies were also discussed. Todd Deutsch (National Renewable Energy Laboratory, USA) presented the current state of photoelectrochemical (PEC) water splitting and the unsolved challenges of durability (37) and remaining high cost of synthesis. (38) Prashant V. Kamat (University of Notre Dame, USA) continued on the topic of photocatalysis and addressed among other points that the stability of metal halide perovskite nanocrystals can be increased by capping with CdS. (39,40) Kamat followed by listing 10 pitfalls to avoid in photocatalysis and electrocatalysis. (41) These presentations also elucidated that both PEC and photocatalysis are much more challenging than many of the other processes above and therefore is on another time scale for contributing to the energy transition. In a separate talk titled “Mastering the Art of Scientific Publication”, Kamat also gave advice to the summer school students on how to make a paper scientifically effective. (42) While invited speakers presented very recent and cutting-edge research, the most present and forward-looking research was presented by the student participants. Students were given 2 min to present the topic of their poster in the main auditorium before the poster sessions. The three evening poster sessions were buzzing with activity in the venue overlooking the Kattegat coast. The poster prize committee consisting of Todd Deutsch and Aliaksandr Bandarenka selected the three poster prize winners: first prize to Olivia Westhead (Imperial College London, UK) on “Ion Solvation in Lithium Mediated Nitrogen Reduction”; second prize to Deema Balalta (University of Antwerp, Belgium) on “Advanced ex and in situ TEM characterization of atomic cluster electrocatalysts”; and third prize to Soren Scott (Imperial College London, UK) on “ixdat: The in-situ experimental data tool”. Congratulations to all three! The challenge of transforming our society to be powered by renewable energy instead of fossil is enormous due to the massive scale on which we consume energy, as pointed out in the talk by Peter C. K. Vesborg (Technical University of Denmark) and will require substantial scientific and technological advancements. However, looking at the immense talent pool as represented by the brilliant and committed students that participated in this summer school, there are reasons to be optimistic for the future. Hope to see many of you in 2024 for the next SURFCAT summer school! Figure 1. Participants of the SURFCAT Summer School 2022 enjoying the view over Kattegat. Image courtesy: Peter C. K. Vesborg. Image blurred to protect individuals’ identities. Figure 2. (a) Evening poster session. (b) The three poster prize winners. From left to right: Soren Scott, Olivia Westhead, and Deema Balalta. Image courtesy: Birgit Bohn and Peter C. K. Vesborg. The summer school and this work was supported by the Villum Foundation V-SUSTAIN grant 9455 to the Villum Center for the Science of Sustainable Fuels and Chemicals. A special thanks goes to the Administration Officers: Anne Birgitte Tramm Ejdrup (VISION, Danish National Research Foundation grant DNRF146) and especially Birgit Bohn (SURFCAT). Without their assistance on the logistics, the summer school would not have been possible! This article references 42 other publications. This article has not yet been cited by other publications. Figure 1. Participants of the SURFCAT Summer School 2022 enjoying the view over Kattegat. Image courtesy: Peter C. K. Vesborg. Image blurred to protect individuals’ identities. Figure 2. (a) Evening poster session. (b) The three poster prize winners. From left to right: Soren Scott, Olivia Westhead, and Deema Balalta. Image courtesy: Birgit Bohn and Peter C. K. Vesborg. This article references 42 other publications.

中文翻译:

2022 年 SURFCAT 暑期学校:可持续燃料和化学品科学

全球从化石能源向可再生能源的转变要求我们社会的能源格局发生翻天覆地的变化。从积极的方面来看,如今光伏和风力涡轮机发电在经济上已经可以与化石能源发电竞争。由于可再生能源输出的能源是电力,所有可以电气化的东西都应该电气化,例如使用热泵的加热、使用电动汽车的个人交通工具等,以最大限度地减少一种能源转换为另一种能源时的能源损失。但是,有些行业不容易电气化;也许最值得注意的是航空业,还有部分海洋部门和化学工业将需要高能量密度的化学燃料和原料。此外,光伏和风力涡轮机的间歇性要求采用有效的方法来储存能量。虽然电池技术可以处理日常间歇性问题,但季节性变化可能需要作为化学燃料进行存储,从而进一步实现长距离能量传输,例如,在管道和油轮中。今天已经可以通过 Power-to-X 工艺生产可持续燃料和化学原料,在该工艺中,可再生电力被催化转化为燃料和化学品,例如氢气、碳氢化合物、含氧化合物和氨。然而,当前最先进的 Power-to-X 工艺的低能效仍然是大规模全球部署的障碍。暑期学校主席 Jakob Kibsgaard(丹麦技术大学),可持续燃料和化学品科学”。暑期学校(2022 年 8 月 7 日至 12 日,在丹麦 Gilleleje 举办)有来自 18 个不同国家的 146 名学生和 26 名国际知名的领先科学家参加,他们在热催化、电催化、光电等理论和实验方面发表演讲-催化和光催化,特别强调理想系统和团簇/纳米粒子的表面。暑期学校的第一个演讲者是 Jens K. Nørskov(丹麦技术大学),他总体上概述了催化方面的挑战,并强调需要通过使用比例关系来降低催化反应的巨大复杂性。(1) 反应中间体之间不利的比例关系限制了目前许多催化剂的能效,并且需要新的催化剂设计范例。(2) 找到一种新的更有利的缩放关系的一个例子与一种新的自旋介导的促进效应有关。热氨合成中传统的碱促进作用本质上是纯静电的。然而,在钴等磁性材料上,自旋力矩的减少导致 N-N 过渡态能量进一步大幅降低,从而提供更优化的比例关系。(3) 转化可再生能源的关键过程是能够将水分解为氢气和氧气。用于分解水的传统低温电解槽要么在酸性环境中运行,要么在碱性环境中运行。然而,通过使用双极膜,阴极和阳极电催化剂可以在稳定状态下在不同的局部 pH 值下运行。Shannon Boettcher(美国俄勒冈大学)介绍了双极膜的概念,并确定在阳离子交换层和阴离子交换层之间的界面需要催化剂来加速严重限制的水离解反应。(4) Thomas F. Jaramillo(美国斯坦福大学)进一步强调了使用双极膜来控制杂质(尤其是氯化物)的传输和反应性,这可以在电解槽中使用非饮用水。Jaramillo 继续讨论升级水电解的话题,特别是质子交换膜 (PEM) 电解槽,目前用于析氧反应 (OER) 的 Ir 基阳极催化剂由于可用性有限而成为真正的瓶颈。(5) 氧化钌 USA) 介绍了双极膜的概念,并确定了在阳离子交换层和阴离子交换层之间的界面中需要催化剂,以加速严格限制的水离解反应。(4) Thomas F. Jaramillo(美国斯坦福大学)进一步强调了使用双极膜来控制杂质(尤其是氯化物)的传输和反应性,这可以在电解槽中使用非饮用水。Jaramillo 继续讨论升级水电解的话题,特别是质子交换膜 (PEM) 电解槽,目前用于析氧反应 (OER) 的 Ir 基阳极催化剂由于可用性有限而成为真正的瓶颈。(5) 氧化钌 USA) 介绍了双极膜的概念,并确定了在阳离子交换层和阴离子交换层之间的界面中需要催化剂,以加速严格限制的水离解反应。(4) Thomas F. Jaramillo(美国斯坦福大学)进一步强调了使用双极膜来控制杂质(尤其是氯化物)的传输和反应性,这可以在电解槽中使用非饮用水。Jaramillo 继续讨论升级水电解的话题,特别是质子交换膜 (PEM) 电解槽,目前用于析氧反应 (OER) 的 Ir 基阳极催化剂由于可用性有限而成为真正的瓶颈。(5) 氧化钌 特别是氯化物,它可以在电解槽中使用非饮用水。Jaramillo 继续讨论升级水电解的话题,特别是质子交换膜 (PEM) 电解槽,目前用于析氧反应 (OER) 的 Ir 基阳极催化剂由于可用性有限而成为真正的瓶颈。(5) 氧化钌 特别是氯化物,它可以在电解槽中使用非饮用水。Jaramillo 继续讨论升级水电解的话题,特别是质子交换膜 (PEM) 电解槽,目前用于析氧反应 (OER) 的 Ir 基阳极催化剂由于可用性有限而成为真正的瓶颈。(5) 氧化钌2催化剂对 OER 表现出很高的活性,但快速降解是一个重大挑战。Jaramillo 表明,尽管通过稳定性数(S 数)评估了一些溶解,(6) Ru 基烧绿石显示出比标准 RuO 2催化剂高得多的稳定性。(7) Yang Shao-Horn (美国麻省理工学院) 扩展了RuO 2的话题用于 OER,并通过将基于原位同步加速器的表面 X 射线散射与 DFT 计算和表面增强红外吸收光谱相结合,提供了活性位点的分子细节,以及它们的局部配位环境对催化活性的影响。(8) 在工作条件下表征电催化剂也是 Aliaksandr S. Bandarenka(德国慕尼黑工业大学)的演讲重点,他展示了如何使用电化学扫描隧道显微镜(STM)在反应条件下识别活性电催化位点析氢反应(9)和析氧反应。(10) 超越水电解,CO 2和 N 2的电化学转化是将可再生能源储存为化学燃料和制造原料化学品的关键过程。Günter Schmid(Siemens Energy,德国)展示了关于如何完全还原Ag 2 Cu 2 O 3的非常有趣的基础研究,并展示了分别针对 CO 2和 CO 电还原的显着不同的产物分布。(11) Schmid 还展示了将水和 CO 2 -to-CO 电解槽耦合到发酵模块如何生产丁醇和己醇,(12) 以及如何将台式研究转化为工业规模。Pelayo García de Arquer(西班牙光子科学研究所)展示了高电流密度 CO 2可以使用离聚物组件实现电解,该离聚物组件散布有用于 H 2 O 的磺酸盐衬里路径和用于 CO 2的碳氟化合物通道。(13) Marc TM Koper(荷兰莱顿大学)从 Frumkin (14) 的著作开始讨论了电解质效应,并描述了金属阳离子的主要作用是在铜上进行 CO 2电还原过程中稳定关键的 CO 2 中间体,银、金电极。(15) Brian Seger(丹麦技术大学)阐述了多碳 (C 2+ ) 产品如何不仅取决于阴极表面附近的局部 pH 值,而且还强烈依赖于局部 CO 可用性。(16)电化学N 2还原形成氨近年来引起了科学界的极大兴趣,但不幸的是也受到许多假阳性报告的影响。(17) Ib Chorkendorff(丹麦技术大学)指出,为了毫无疑问地证明合成氨确实来自 N 2分子的活化而不是来自杂质等,必须使用15 N 2进行定量同位素标记实验执行。(18) Chorkendorff 继续描述了锂介导的氮还原的进展,并表明氮气流中的少量氧气可以──与直觉相反──提高反应的法拉第效率和稳定性。(19) 实现1A/cm 2电流密度的途径还报道了法拉第效率超过 70%。(20) 电解水产生氢气,也可以改进现有的热催化过程,这个主题也被热烈讨论。甲醇是一种很好的平台分子,它不仅可以直接用作燃料,还可以用作许多化学品的原料,例如使用沸石催化剂的碳氢化合物或烯烃。工业上用于甲醇合成的催化剂是由 ZnO 促进的 Cu。Petra E. de Jongh(荷兰乌得勒支大学)表明,通过使用弱相互作用的石墨碳载体,可以避免通常与传统使用的氧化物催化剂载体结合的大部分锌旁观物种。因此,Cu 上有0个原子。(21) 这一结果与 Anders Nilsson(瑞典斯德哥尔摩大学)的演讲非常吻合,他表明铜-锌催化剂的活性状态涉及因 CO 的存在而产生的表面金属 Zn-Cu 合金位点。这是通过使用揭示的CO 2期间的 X 射线光电子能谱 (XPS)/CO 在 Zn/ZnO/Cu(211) 上在 180 至 500 毫巴的压力下氢化。(22) 因此,似乎已达成共识,即商业甲醇合成的活性位点起源于 CuZn 表面合金。该领域现在可以利用这种洞察力并继续探索该领域的新催化剂。甲醇制烯烃 (MTO) 是 Unni Olsbye(挪威奥斯陆大学)的贡献的一部分,他表明 CO 可以抑制具有 AEI 拓扑结构的沸石型催化剂中烯烃的氢化。(23) Felix Studt(德国卡尔斯鲁厄理工学院)通过将反应中间体和过渡态的密度泛函理论 (DFT) 计算与高度准确的从头计算进行比较得出结论计算表明,DFT 足以用于筛选用于 MTO 工艺的沸石型催化剂。(24) 在例如燃料电池中将存储的化学能转换回电能(X-to-Power)也极大地依赖于催化剂以最小化能量损失。质子交换膜 (PEM) 燃料电池中的行业标准氧还原反应 (ORR) 阴极催化剂是基于 Pt 的。然而,这些催化剂容易被操作介质中存在的几种污染物中毒。Anthony Kucernak(英国伦敦帝国理工学院)表明,单原子铁位点对中毒的敏感性要低得多 (25),而且单原子 Fe–N 4的密度可以通过使用牺牲金属 (Zn) 预先形成碳-氮矩阵来增加位点。(26) Charles Sykes(美国塔夫茨大学)继续研究单点催化领域;更具体地说是关于单原子合金 (27),并展示了这些催化剂如何通过 STM 精美成像并用于选择性氢化反应。(28) Ulrike Diebold(奥地利维也纳科技大学)也强调了使用扫描探针技术来研究表面的局部几何形状和特性。使用非接触式原子力显微镜 (nc-AFM),In 2 O 3上各个表面羟基的局部酸度(111)表面可以确定。(29) 此外,Diebold 提供了 STM 数据,其中可以在 Fe 3 O 4上的相同 2 重位点发现多种金属作为单个原子(001) 支持。使用程序升温解吸 (TPD),发现单个金属位点上的 CO2 吸附强度不同于相应的金属表面和支撑团簇。(30) 单中心催化剂并不是所呈现的唯一有趣的结构。Yves Huttel(西班牙马德里材料科学研究所)展示了如何使用具有三个磁控管的多离子簇源生产复杂的 core@shell 和 core@shell@shell 纳米粒子 (31),并且在簇生长过程中吸附水分子可以导致核心卫星纳米颗粒结构的形成。(32) Robert Schlögl(德国马普学会弗里茨哈伯研究所)在与试剂相互作用时解决了活性位点的动态性质,并指出需要原位光谱显微镜、模型系统,和理论来探索和理解这种动态。Ag 用于将乙烯选择性氧化为环氧乙烷的研究就是例证,其中超高真空 (UHV) 和结合理论的原位实验方法表明,吸附的SO 4中的活性亲电子氧物种是氧. (33) 结构-功能关系也是 Stig Helveg(丹麦技术大学)的贡献主题。电子显微镜已成为可视化纳米级物体中三维原子排列的不可或缺的工具。但是,应注意避免电子束引起的物体改变。表面原子(自然对催化很重要)由于配位减少而特别容易发生变化。Helveg 介绍了一种在 3D 原子分辨率成像中定量解释原子动力学的分析方法,并展示了 Co-Mo-S 纳米晶体的动态分析。(34) 原子级计算材料设计是暑期学校的另一个关键主题。Jan Rossmeisl(丹麦哥本哈根大学)概述了在基于 DFT 的模型上使用贝叶斯优化的计算方法,它可以跨越高熵合金的广阔成分空间,并预测电化学反应最活跃的成分。(35) Tejs Vegge(丹麦技术大学)阐述了人工智能在发现电化学材料和界面方面的作用,并展示了神经网络电位与遗传算法相结合如何能够深入了解 Pt-Ni 纳米合金的结构稳定性。(36) 虽然大多数讨论都集中在热催化和电催化上,但也讨论了其他技术。Todd Deutsch(美国国家可再生能源实验室)介绍了光电化学 (PEC) 水分解的现状以及耐久性 (37) 和高合成成本方面尚未解决的挑战。(38) Prashant V. Kamat(圣母大学,USA)继续讨论光催化的主题,并在其他要点中指出,金属卤化物钙钛矿纳米晶体的稳定性可以通过用 CdS 覆盖来提高。(39,40) Kamat 随后列出了在光催化和电催化中要避免的 10 个陷阱。(41) 这些演讲还阐明了 PEC 和光催化比上述许多其他过程更具挑战性,因此在另一个时间尺度上有助于能源转型。在另一场名为“掌握科学出版的艺术”的演讲中,Kamat 还向暑期学校的学生提出了如何使论文具有科学效果的建议。(42) 虽然受邀演讲者介绍了最新和最前沿的研究,但学生参与者介绍了最新和前瞻性的研究。在海报会议之前,学生们有 2 分钟的时间在主礼堂展示他们海报的主题。三个晚上的海报会议在俯瞰卡特加特海岸的会场中热闹非凡。由 Todd Deutsch 和 Aliaksandr Bandarenka 组成的海报奖委员会选出了三名海报奖获得者:一等奖授予 Olivia Westhead(英国伦敦帝国理工学院)“锂介导的氮还原中的离子溶剂化”;Deema Balalta(比利时安特卫普大学)在“高级 一等奖授予 Olivia Westhead(英国伦敦帝国理工学院)“锂介导的氮还原中的离子溶剂化”;Deema Balalta(比利时安特卫普大学)在“高级 一等奖授予 Olivia Westhead(英国伦敦帝国理工学院)“锂介导的氮还原中的离子溶剂化”;Deema Balalta(比利时安特卫普大学)在“高级原子团簇电催化剂的体外原位TEM 表征”;三等奖授予 Soren Scott(英国伦敦帝国理工学院)“ixdat:原位实验数据工具”。祝贺这三个人!正如 Peter CK Vesborg(丹麦技术大学)在演讲中指出的那样,由于我们消耗能源的规模很大,因此将我们的社会转变为由可再生能源而不是化石能源提供动力的挑战是巨大的,并且需要大量的科学和技术进步。然而,看着以参加本次暑期学校的才华横溢、兢兢业业的学生为代表的庞大人才库,我们有理由对未来感到乐观。希望在 2024 年的下一届 SURFCAT 暑期学校见到你们中的许多人!图 1. 2022 年 SURFCAT 暑期学校的参与者欣赏卡特加特海峡的景色。图片提供:Peter CK Vesborg。图像模糊以保护个人身份。图 2.(a) 晚间海报会议。(b) 三位海报奖获得者。从左到右:Soren Scott、Olivia Westhead 和 Deema Balalta。图片提供:Birgit Bohn 和 Peter CK Vesborg。暑期学校和这项工作得到了 Villum 基金会 V-SUSTAIN 赠款 9455 的支持,该赠款给了 Villum 可持续燃料和化学品科学中心。特别感谢行政官员:Anne Birgitte Tramm Ejdrup(VISION,丹麦国家研究基金会授予 DNRF146),尤其是 Birgit Bohn (SURFCAT)。没有他们在后勤方面的帮助,暑期学校是不可能的!本文引用了 42 篇其他出版物。这篇文章尚未被其他出版物引用。图 1. 2022 年 SURFCAT 暑期学校的参与者欣赏卡特加特海峡的景色。图片提供:Peter CK Vesborg。图像模糊以保护个人身份。图 2.(a) 晚间海报会议。(b) 三位海报奖获得者。从左到右:Soren Scott、Olivia Westhead 和 Deema Balalta。图片提供:Birgit Bohn 和 Peter CK Vesborg。本文引用了 42 篇其他出版物。图片提供:Birgit Bohn 和 Peter CK Vesborg。本文引用了 42 篇其他出版物。图片提供:Birgit Bohn 和 Peter CK Vesborg。本文引用了 42 篇其他出版物。
更新日期:2022-11-29
down
wechat
bug