当前位置: X-MOL 学术Chem. Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Precursor-Mediated Colloidal Synthesis of Compositionally Tunable Cu–Sb–M–S (M = Zn, Co, and Ni) Nanocrystals and Their Transport Properties
Chemistry of Materials ( IF 8.6 ) Pub Date : 2022-11-21 , DOI: 10.1021/acs.chemmater.2c02605
Maria Zubair 1 , Vasily A Lebedev 1 , Mohini Mishra 1 , Temilade Esther Adegoke 1 , Ibrahim Saana Amiinu 1 , Yu Zhang 2 , Andreu Cabot 2, 3 , Shalini Singh 1 , Kevin M Ryan 1
Affiliation  

The solution-based colloidal synthesis of multinary semiconductor compositions has allowed the design of new inorganic materials impacting a large variety of applications. Yet there are certain compositions that have remained elusive─particularly quaternary structures of transition metal-based (e.g., Co, Zn, Ni, Fe, Mn, and Cr) copper antimony chalcogenides. These are widely sought for tuning the electrical and thermal conductivity as a function of the size, composition, and crystal phase. In this work, a facile hot injection approach for the synthesis of three different tetrahedrite-substituted nanocrystals (NCs) (Cu10Zn2Sb4S13, Cu10Co2Sb4S13, and Cu10Ni1.5Sb4S13) and their growth mechanisms are investigated. We reveal that the interplay between the Zn, Ni, and Co precursors on the basis of thiophilicity is key to obtaining pure phase NCs with controlled size and shape. While all of the synthesized crystal phases display outstanding low thermal conductivity, the Cu10.5Sb4Ni1.5S13 system shows the most enhanced electrical conductivity compared to Cu10Zn2Sb4S13 and Cu10Co2Sb4S13. This study highlights an effective synthesis strategy for the growth of complex quaternary nanocrystals and their high potential for application in thermoelectrics.

中文翻译:

成分可调的 Cu-Sb-M-S(M = Zn、Co 和 Ni)纳米晶的前体介导胶体合成及其传输特性

多元半导体组合物的基于溶液的胶体合成允许设计影响多种应用的新型无机材料。然而,某些成分仍然难以捉摸,尤其是过渡金属基(例如,Co、Zn、Ni、Fe、Mn 和 Cr)铜锑硫族化物的四元结构。这些被广泛寻求用于根据尺寸、组成和晶相调整电导率和导热率。在这项工作中,一种简便的热注射方法用于合成三种不同的四面体取代纳米晶体 (NC)(Cu 10 Zn 2 Sb 4 S 13、Cu 10 Co 2 Sb 4 S 13, 和Cu 10 Ni 1.5 Sb 4 S 13 )及其生长机制进行了研究。我们揭示了基于亲硫性的 Zn、Ni 和 Co 前驱体之间的相互作用是获得具有受控尺寸和形状的纯相 NC 的关键。虽然所有合成的晶相都显示出出色的低导热性,但与 Cu 10 Zn 2 Sb 4 S 13和 Cu 10 Co 2 Sb 4 S 13相比,Cu 10.5 Sb 4 Ni 1.5 S 13系统显示出增强最多的电导率. 这项研究强调了复杂四元纳米晶体生长的有效合成策略及其在热电领域的巨大应用潜力。
更新日期:2022-11-21
down
wechat
bug