当前位置: X-MOL 学术Phys. Chem. Chem. Phys. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Ultra-sensitive H2S sensor based on sunflower-like In-doped ZnO with enriched oxygen vacancies
Physical Chemistry Chemical Physics ( IF 3.3 ) Pub Date : 2022-11-22 , DOI: 10.1039/d2cp02539f
Yong-Hui Zhang 1 , Ying-Ying Li 1 , Xuan-Yu Yang 1 , Fei-Long Gong 1 , Jun-Li Chen 1 , Ke-Feng Xie 2 , Hao-Li Zhang 3 , Shao-Ming Fang 1
Affiliation  

Metal oxide sensors face the challenge of high response and fast recovery at low operating temperatures for the detection of toxic and flammable hydrogen sulfide (H2S) gases. Herein, novel In-doped ZnO with a sunflower-like structure and tunable surface properties was rationally synthesized. The substitutional In atom in the ZnO crystal can dramatically enhance the concentration of oxygen vacancies (Ov), the In–ZnO sites are responsible for fast recovery, and the formation of sub-stable sulfide intermediates gives rise to the high response towards H2S. As a result, the response of the optimized 4In–ZnO sensor is 3538.36 to 50 ppm H2S at a low operating temperature of 110 °C, which is 106 times higher than that of pristine ZnO. Moreover, the response time and recovery time to 50 ppm H2S are 100 s and 27 s, respectively, with high selectivity and stability. First-principles calculations revealed that 4In–ZnO with rich Ov exhibited higher adsorption energy for the H2S molecule than pristine ZnO, resulting in effortless H2S detection. Our work lays the foundation for the rational design of highly sensitive gas sensors through precise doping of atoms in oxygen-rich vacancies in semiconductor materials.

中文翻译:

基于富含氧空位的类向日葵 In 掺杂 ZnO 的超灵敏 H2S 传感器

金属氧化物传感器在检测有毒和易燃的硫化氢 (H 2 S) 气体时面临着在低工作温度下实现高响应和快速恢复的挑战。在此,合理合成了具有向日葵状结构和可调表面性质的新型 In 掺杂 ZnO。ZnO 晶体中的取代 In 原子可以显着提高氧空位 (O v ) 的浓度,In-ZnO 位点负责快速恢复,亚稳定硫化物中间体的形成导致对 H 2的高响应S. 因此,优化后的 4In–ZnO 传感器的响应为 3538.36 至 50 ppm H 2S 在 110 °C 的低工作温度下,比原始 ZnO 高 106 倍。此外,对 50 ppm H 2 S的响应时间和恢复时间分别为 100 s 和 27 s,具有高选择性和稳定性。第一性原理计算表明,具有丰富 Ov 的 4In-ZnO对H 2 S 分子表现出比原始 ZnO更高的吸附能,从而可以毫不费力地检测 H 2 S。我们的工作通过在半导体材料的富氧空位中精确掺杂原子,为合理设计高灵敏度气体传感器奠定了基础。
更新日期:2022-11-22
down
wechat
bug