当前位置: X-MOL 学术Anal. Chim. Acta › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A microfluidic device to separate high-quality plasma from undiluted whole blood sample using an enhanced gravitational sedimentation mechanism
Analytica Chimica Acta ( IF 6.2 ) Pub Date : 2022-11-19 , DOI: 10.1016/j.aca.2022.340641
Somayyeh Bakhtiaridoost 1 , Hamidreza Habibiyan 2 , Hassan Ghafoorifard 1
Affiliation  

The growing interest in lab-on-a-chip systems for plasma separation has led to the presentation of various devices. Trench-based devices benefiting from gravitational sedimentation are efficient structures with air-locking and low speed-drawbacks. The present study introduces a fast, hemolysis-free, highly efficient blood plasma separation microfluidic device. The proposed device is based on gravitational sedimentation combined with dielectrophoresis force to promote the purity of the separated plasma, reduce the separation process time, and overcome the air-locking problem. The effect of geometrical parameters on the separation process is investigated using finite element analysis to attain optimal design specifications. A drop of whole blood (10 μl) is injected into the fabricated chip at four flow rates of 70 nl/s to 100 nl/s. It takes less than 4 min to obtain 2.2 μl plasma from undiluted blood without losing plasma proteins. Additionally, a porous Melt-Blown Polypropylene (MBPP) layer is used to eliminate the air-locking problem, which in previous trench-based microsystems led to time-consuming device preparation steps. Blood samples with various hematocrits (15%–65%) are tested with the applied voltages of 0–20 Vpp through the optimized structure. A purity of 99.98% ± 0.02% (evaluated by hemocytometry) is achieved using optimized dielectrophoresis force by the applied voltage of 20 Vpp, which is more than the previous studies. The UV–Visible spectroscopy results confirm obtaining a non-hemolyzed sample at a flow rate of 70 nl/s. The proposed device achieves a relative increase in the flow rate compared to similar previous studies while maintaining the high quality of the separated plasma. This achievement lies in using the MBPP layer and combining two separation methods.



中文翻译:

一种微流体装置,使用增强的重力沉降机制从未稀释的全血样品中分离出高质量血浆

人们对用于血浆分离的芯片实验室系统的兴趣日益浓厚,导致出现了各种设备。受益于重力沉降的基于沟槽的设备是具有气锁和低速缺点的高效结构。本研究介绍了一种快速、无溶血、高效的血浆分离微流控装置。所提出的装置基于重力沉降与介电泳力相结合,以提高分离血浆的纯度,减少分离过程时间,并克服气锁问题。使用有限元分析研究几何参数对分离过程的影响,以获得最佳设计规范。将一滴全血 (10 μl) 以 70 nl/s 至 100 nl/s 的四种流速注入制造的芯片中。从未稀释的血液中提取 2.2 μl 血浆而不损失血浆蛋白只需不到 4 分钟。此外,多孔熔喷聚丙烯 (MBPP) 层用于消除气锁问题,在以前的基于沟槽的微系统中,该问题会导致耗时的设备准备步骤。具有各种血细胞比容 (15%–65%) 的血液样本在 0–20 V 的施加电压下进行测试pp通过优化结构。通过施加 20 V pp的电压,使用优化的介电泳力实现了 99.98% ± 0.02% 的纯度(通过血细胞计数法评估),这比以前的研究更高。紫外-可见光谱结果证实在 70 nl/s 的流速下获得了未溶血的样品。与之前类似的研究相比,所提出的装置实现了流速的相对增加,同时保持了分离血浆的高质量。这一成就在于使用了 MBPP 层并结合了两种分离方法。

更新日期:2022-11-19
down
wechat
bug