当前位置: X-MOL 学术IEEE Trans. Neural Netw. Learn. Syst. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Adaptive Multimodel Knowledge Transfer Matrix Machine for EEG Classification.
IEEE Transactions on Neural Networks and Learning Systems ( IF 10.4 ) Pub Date : 2022-11-16 , DOI: 10.1109/tnnls.2022.3220551
Shuang Liang 1 , Wenlong Hang 2 , Baiying Lei 3 , Jun Wang 4 , Jing Qin 5 , Kup-Sze Choi 5 , Yu Zhang 6
Affiliation  

The emerging matrix learning methods have achieved promising performances in electroencephalogram (EEG) classification by exploiting the structural information between the columns or rows of feature matrices. Due to the intersubject variability of EEG data, these methods generally need to collect a large amount of labeled individual EEG data, which would cause fatigue and inconvenience to the subjects. Insufficient subject-specific EEG data will weaken the generalization capability of the matrix learning methods in neural pattern decoding. To overcome this dilemma, we propose an adaptive multimodel knowledge transfer matrix machine (AMK-TMM), which can selectively leverage model knowledge from multiple source subjects and capture the structural information of the corresponding EEG feature matrices. Specifically, by incorporating least-squares (LS) loss with spectral elastic net regularization, we first present an LS support matrix machine (LS-SMM) to model the EEG feature matrices. To boost the generalization capability of LS-SMM in scenarios with limited EEG data, we then propose a multimodel adaption method, which can adaptively choose multiple correlated source model knowledge with a leave-one-out cross-validation strategy on the available target training data. We extensively evaluate our method on three independent EEG datasets. Experimental results demonstrate that our method achieves promising performances on EEG classification.

中文翻译:

用于 EEG 分类的自适应多模型知识转移矩阵机。

新兴的矩阵学习方法通​​过利用特征矩阵的列或行之间的结构信息,在脑电图 (EEG) 分类中取得了令人鼓舞的性能。由于脑电数据的个体间变异性,这些方法通常需要收集大量标记的个体脑电数据,这会给受试者带来疲劳和不便。特定主题的脑电数据不足会削弱矩阵学习方法在神经模式解码中的泛化能力。为了克服这一困境,我们提出了一种自适应多模型知识转移矩阵机 (AMK-TMM),它可以选择性地利用来自多个源主题的模型知识,并捕获相应 EEG 特征矩阵的结构信息。具体来说,通过将最小二乘 (LS) 损失与谱弹性网络正则化相结合,我们首先提出了一个 LS 支持矩阵机 (LS-SMM) 来对 EEG 特征矩阵进行建模。为了提高 LS-SMM 在脑电数据有限的情况下的泛化能力,我们提出了一种多模型自适应方法,该方法可以在可用的目标训练数据上采用留一法交叉验证策略自适应地选择多个相关源模型知识. 我们在三个独立的 EEG 数据集上广泛评估了我们的方法。实验结果表明,我们的方法在脑电图分类方面取得了可喜的表现。然后,我们提出了一种多模型自适应方法,该方法可以在可用的目标训练数据上采用留一法交叉验证策略自适应地选择多个相关的源模型知识。我们在三个独立的 EEG 数据集上广泛评估了我们的方法。实验结果表明,我们的方法在脑电图分类方面取得了可喜的表现。然后,我们提出了一种多模型自适应方法,该方法可以在可用的目标训练数据上采用留一法交叉验证策略自适应地选择多个相关的源模型知识。我们在三个独立的 EEG 数据集上广泛评估了我们的方法。实验结果表明,我们的方法在脑电图分类方面取得了可喜的表现。
更新日期:2022-11-16
down
wechat
bug