当前位置: X-MOL 学术Nanoscale › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Reconfigurable chirality with achiral excitonic materials in the strong-coupling regime
Nanoscale ( IF 6.7 ) Pub Date : 2022-11-14 , DOI: 10.1039/d2nr05063c
P Elli Stamatopoulou 1 , Sotiris Droulias 2 , Guillermo P Acuna 3 , N Asger Mortensen 1, 4 , Christos Tserkezis 1
Affiliation  

We introduce and theoretically analyze the concept of manipulating optical chirality via strong coupling of the optical modes of chiral nanostructures with excitonic transitions in molecular layers or semiconductors. With chirality being omnipresent in chemistry and biomedicine, and highly desirable for technological applications related to efficient light manipulation, the design of nanophotonic architectures that sense the handedness of molecules or generate the desired light polarization in an externally controllable manner is of major interdisciplinary importance. Here we propose that such capabilities can be provided by the mode splitting resulting from polaritonic hybridization. Starting with an object with well-known chiroptical response—here, for a proof of concept, a chiral sphere—we show that strong coupling with a nearby excitonic material generates two spectral branches that retain the object's high chirality density, which manifest most clearly through anticrossings in circular-dichroism or differential-scattering dispersion diagrams. These windows can be controlled by the intrinsic properties of the excitonic layer and the strength of the interaction, enabling thus the post-fabrication manipulation of optical chirality. Our findings are further verified via simulations of circular dichroism of a realistic chiral architecture, namely a helical assembly of plasmonic nanospheres embedded in a resonant matrix.

中文翻译:

强耦合状态下非手性激子材料的可重构手性

我们通过以下方式介绍并从理论上分析了操纵光学手性的概念手性纳米结构的光学模式与分子层或半导体中的激子跃迁的强耦合。由于手性在化学和生物医学中无处不在,并且非常适合与高效光操纵相关的技术应用,因此设计能够感知分子旋向性或以外部可控方式产生所需光偏振的纳米光子结构具有重要的跨学科重要性。在这里,我们建议可以通过极化子杂交产生的模式分裂来提供这种能力。从一个具有众所周知的手性光学响应的​​物体开始——这里,为了概念证明,手性球体——我们表明与附近激子材料的强耦合会产生两个光谱分支,这些分支保留了物体的高手性密度,通过圆二色性或微分散射色散图中的反交叉表现得最清楚。这些窗口可以通过激子层的固有特性和相互作用的强度来控制,从而实现光学手性的制造后操作。我们的发现得到进一步验证通过模拟逼真的手性结构的圆二色性,即嵌入共振矩阵中的等离子体纳米球的螺旋组装。
更新日期:2022-11-14
down
wechat
bug