当前位置: X-MOL 学术Chem. Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Activating charge-transfer state formation in strongly-coupled dimers using DNA scaffolds
Chemical Science ( IF 8.4 ) Pub Date : 2022-10-06 , DOI: 10.1039/d2sc02759c
Stephanie M Hart 1 , James L Banal 2 , Maria A Castellanos 1 , Larysa Markova 3 , Yuliia Vyborna 3 , Jeffrey Gorman 2 , Robert Häner 3 , Adam P Willard 1 , Mark Bathe 2 , Gabriela S Schlau-Cohen 1
Affiliation  

Strongly-coupled multichromophoric assemblies orchestrate the absorption, transport, and conversion of photonic energy in natural and synthetic systems. Programming these functionalities involves the production of materials in which chromophore placement is precisely controlled. DNA nanomaterials have emerged as a programmable scaffold that introduces the control necessary to select desired excitonic properties. While the ability to control photophysical processes, such as energy transport, has been established, similar control over photochemical processes, such as interchromophore charge transfer, has not been demonstrated in DNA. In particular, charge transfer requires the presence of close-range interchromophoric interactions, which have a particularly steep distance dependence, but are required for eventual energy conversion. Here, we report a DNA-chromophore platform in which long-range excitonic couplings and short-range charge-transfer couplings can be tailored. Using combinatorial screening, we discovered chromophore geometries that enhance or suppress photochemistry. We combined spectroscopic and computational results to establish the presence of symmetry-breaking charge transfer in DNA-scaffolded squaraines, which had not been previously achieved in these chromophores. Our results demonstrate that the geometric control introduced through the DNA can access otherwise inaccessible processes and program the evolution of excitonic states of molecular chromophores, opening up opportunities for designer photoactive materials for light harvesting and computation.

中文翻译:

使用 DNA 支架激活强耦合二聚体中的电荷转移态形成

强耦合多发色团组件协调自然和合成系统中光子能量的吸收、传输和转换。对这些功能进行编程涉及生产可精确控制发色团位置的材料。DNA 纳米材料已作为一种可编程支架出现,它引入了选择所需激子特性所需的控制。虽然已经建立了控制光物理过程(如能量传输)的能力,但尚未在 DNA 中证明对光化学过程(如生色团间电荷转移)的类似控制。特别是,电荷转移需要存在近距离的发色团间相互作用,这种相互作用具有特别陡峭的距离依赖性,但对于最终的能量转换是必需的。这里,我们报告了一个 DNA 发色团平台,其中可以定制长程激子偶联和短程电荷转移偶联。使用组合筛选,我们发现了增强或抑制光化学的生色团几何形状。我们结合了光谱和计算结果,确定了 DNA 支架方酸中存在对称破坏电荷转移,这在这些发色团中以前没有实现过。我们的研究结果表明,通过 DNA 引入的几何控制可以访问其他方式无法访问的过程,并对分子发色团的激子状态的演变进行编程,为设计光敏材料进行光收集和计算开辟了机会。
更新日期:2022-10-06
down
wechat
bug