当前位置: X-MOL 学术Mater. Sci. Eng. A › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
In-situ modulating laminated microstructure of α+β+TiC in titanium composites by laser powder bed fusion of Mo2C/Ti powder mixture towards biomedical applications
Materials Science and Engineering: A ( IF 6.4 ) Pub Date : 2022-09-29 , DOI: 10.1016/j.msea.2022.144101
Qimin Shi , Shoufeng Yang , Yi Sun , Bart Van Meerbeek , Constantinus Politis

Additive manufacturing offers a revolutionary pathway for customising patient-specific metal implants. However, clinical practice calls for balanced material properties besides a patient-matched geometry, including good biocompatibility, low elastic modulus, good material strength and enhanced wear resistance. This study demonstrates an in-situ microscale composition modulation method by laser powder bed fusion using a Mo2C/Ti powder mixture, achieving adaptive microstructure and successfully combining balanced mechanical and wear properties in the Ti-7.5Mo-2.4TiC composites. The modulation is made through partial homogenisation of raw materials, leaving entangled Mo-rich and Mo-poor streaks around the molten pool boundary and a Ti–Mo matrix at the molten pool centre. By optimising volumetric energy density to 82.3 J/mm3, the modulated composition inhomogeneity produces an alternately laminated microstructure with entangled α and β streaks around the molten pool boundary and mixed α+β phases at the molten pool centre. Such that the molten pool boundary reveals a lower elastic modulus relative to the molten pool centre. The uneven allocation of elastic moduli throughout layers of molten pools enables a step-by-step deformation mode under compressive loading, lowering the component-related elastic modulus to 90.4 ± 2.1 GPa; on the other hand, it suppresses crack propagation, extending the material's elongation to 16.4 ± 1.4%. The synergistic effect of grain refinement and dispersion strengthening provided by in-situ precipitated TiC improves yield strength (936.9 ± 19.8 MPa) and ultimate compressive strength (1415.5 ± 23.1 MPa). The hard TiC also enhances the wear property, obtaining lower wear rates (down to 8.6 × 10−4 mm3N−1m−1) than the pure Ti. The balanced mechanical and wear properties could expand the potential of this composite in clinical use. More importantly, this approach creates a pathway for microscale composition modulation in material design and performance customisation towards biomedical applications.



中文翻译:

通过激光粉末床熔合 Mo2C/Ti 粉末混合物在钛复合材料中原位调制 α+β+TiC 叠层微观结构在生物医学方面的应用

增材制造为定制特定患者的金属植入物提供了一条革命性的途径。然而,临床实践要求除了与患者匹配的几何形状外,还需要平衡的材料特性,包括良好的生物相容性、低弹性模量、良好的材料强度和增强的耐磨性。本研究展示了一种使用 Mo 2的激光粉末床熔融原位微尺度成分调制方法C/Ti 粉末混合物,在 Ti-7.5Mo-2.4TiC 复合材料中实现了自适应微观结构并成功地结合了平衡的机械性能和磨损性能。调制是通过原材料的部分均质化进行的,在熔池边界周围留下缠结的富钼和贫钼条纹,并在熔池中心留下 Ti-Mo 基体。通过优化体积能量密度至 82.3 J/mm 3, 调制的成分不均匀性产生交替层叠的微观结构,在熔池边界周围有缠结的 α 和 β 条纹,在熔池中心有混合的 α+β 相。使得熔池边界相对于熔池中心显示出较低的弹性模量。整个熔池层中弹性模量的不均匀分配使得在压缩载荷下逐步变形模式,将与组件相关的弹性模量降低到 90.4 ± 2.1 GPa;另一方面,它抑制裂纹扩展,将材料的伸长率扩大到 16.4 ± 1.4%。原位沉淀 TiC 提供的晶粒细化和弥散强化的协同作用提高了屈服强度 (936.9 ± 19.8 MPa) 和极限抗压强度 (1415.5 ± 23.1 MPa)。-4 mm 3 N -1 m -1 ) 比纯钛。平衡的机械和磨损性能可以扩大这种复合材料在临床应用中的潜力。更重要的是,这种方法为材料设计中的微尺度成分调制和生物医学应用的性能定制创造了一条途径。

更新日期:2022-10-03
down
wechat
bug