当前位置: X-MOL 学术arXiv.cond-mat.mtrl-sci › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
The kagomé metals RbTi$_3$Bi$_5$ and CsTi$_3$Bi$_5$
arXiv - PHYS - Materials Science Pub Date : 2022-09-23 , DOI: arxiv-2209.11656
Dominik Werhahn, Brenden R. Ortiz, Aurland K. Hay, Stephen D. Wilson, Ram Seshadri, Dirk Johrendt

The kagom\'e metals RbTi$_3$Bi$_5$ and CsTi$_3$Bi$_5$ were synthesized both as polycrystalline powders by heating the elements an argon atmosphere and as single crystals grown using a self-flux method. The compounds crystallize in the hexagonal crystal system isotypically to KV$_3$Sb$_5$ (P6/mmm, Z = 1, CsTi3Bi5: a = 5.7873(1) {\AA}, c = 9.2062(1) {\AA}; RbTi3Bi5: a = 5.773(1) {\AA}, c = 9.065(1) {\AA}). Titanium atoms form a kagom\'e net with bismuth atoms in the hexagons as well as above and below the triangles. The alkali metal atoms are coordinated by 12 bismuth atoms and form AlB$_2$-like slabs between the kagom\'e layers. Magnetic susceptibility measurements with CsTi$_3$Bi$_5$ and RbTi$_3$Bi$_5$ single crystals reveal Pauli-paramagnetism and traces of superconductivity caused by CsBi$_2$/RbBi$_2$ impurities. Magnetotransport measurements reveal conventional Fermi liquid behavior and quantum oscillations indicative of a single dominant orbit at low temperature. DFT calculations show the characteristic metallic kagom\'e band structure similar to that of CsV$_3$Sb$_5$ with reduced band filling. A symmetry analysis of the band structure does not reveal an obvious and unique signature of a nontrivial topology.
更新日期:2022-09-26
down
wechat
bug