当前位置: X-MOL 学术Surf. Interfaces › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Atomic layer deposition of oxide coatings on porous metal and polymer structures fabricated by additive manufacturing methods (laser-based powder bed fusion, material extrusion, material jetting)
Surfaces and Interfaces ( IF 6.2 ) Pub Date : 2022-09-22 , DOI: 10.1016/j.surfin.2022.102361
Reinhard Kaindl, Tomáš Homola, Armando Rastelli, Albin Schwarz, Aivar Tarre, Dietmar Kopp, Anna Maria Coclite, Michael Görtler, Benjamin Meier, Bernd Prettenthaler, Maria Belegratis, Jürgen M. Lackner, Wolfgang Waldhauser

Complex porous 316 L stainless steel, Ti-6Al-4V, Ti-6Al-7Nb, ULTEM™ 1010 and MED610™ polymer structures were produced with additive manufacturing methods. The structures were surface functionalized by atomic layer deposition of titanium, zinc and zirconium oxide coatings with a thickness between 14 and 43 nm. Deep and narrow structures with aspect ratios >10 could be coated. Titanium oxide films are mostly amorphous when plasma-assisted deposition is used and contain nanocrystalline anatase when deposited by thermal atomic layer deposition. The deposited titanium oxide grains ranged in size from ∼20 to 60 nm. In interior parts of the fractured porous polymer model structures with pore sizes of 1–2 mm, both thermal and plasma-assisted titanium oxide thin films and partly delamination were detected. X-ray photoelectron spectroscopy analysis revealed almost stoichiometric composition and dominance of the Ti (IV) oxidation state at a 250 °C deposition temperature. Zinc oxide coatings in porous polymer model structures partly delaminate as well, while adhesion and homogeneity is higher for printed Ti-6Al-7Nb lattice structures with a 0.5-mm mesh size. Zirconium oxide coatings on Ti-6Al-4V lattice structures with a 0.8-mm mesh size are comparable to zinc oxide coatings but are mostly crystalline. This is attributed to the relatively high, 300 °C deposition temperature. The findings demonstrate potential but also limitations of combined additive manufacturing and atomic layer deposition for medicine and energy production applications. In addition, the results confirm previous studies that metallic and polymeric substrate materials and process conditions strongly influence the coating structure and composition, and individual development of each intended application is required.



中文翻译:

通过增材制造方法(基于激光的粉末床熔合、材料挤出、材料喷射)制造的多孔金属和聚合物结构上的氧化物涂层的原子层沉积

使用增材制造方法生产复杂多孔 316 L 不锈钢、Ti-6Al-4V、Ti-6Al-7Nb、ULTEM™ 1010 和 MED610™ 聚合物结构。这些结构通过钛、锌和氧化锆涂层的原子层沉积进行表面功能化,厚度在 14 到 43 nm 之间。可以涂覆纵横比 >10 的深而窄的结构。当使用等离子体辅助沉积时,氧化钛膜大多是无定形的,并且在通过热原子层沉积时包含纳米晶锐钛矿。沉积的二氧化钛晶粒的尺寸范围为~20 至 60 nm。在孔径为 1-2 mm 的断裂多孔聚合物模型结构的内部,检测到热和等离子体辅助的二氧化钛薄膜和部分分层。X 射线光电子能谱分析揭示了在 250 °C 沉积温度下钛 (IV) 氧化态的几乎化学计量组成和优势。多孔聚合物模型结构中的氧化锌涂层也部分分层,而具有 0.5 毫米网格尺寸的印刷 Ti-6Al-7Nb 晶格结构的附着力和均匀性更高。Ti-6Al-4V 晶格结构上的氧化锆涂层具有 0.8 毫米的网格尺寸,与氧化锌涂层相当,但大多是结晶的。这归因于相对较高的 300 °C 沉积温度。研究结果证明了将增材制造和原子层沉积相结合在医学和能源生产应用中的潜力但也存在局限性。此外,

更新日期:2022-09-27
down
wechat
bug