当前位置: X-MOL 学术arXiv.cond-mat.dis-nn › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Biskyrmion-based artificial neuron with refractory period
arXiv - PHYS - Disordered Systems and Neural Networks Pub Date : 2022-09-22 , DOI: arxiv-2209.11017
Ismael Ribeiro de Assis, Ingrid Mertig, Börge Göbel

Magnetic skyrmions are nanoscale magnetic whirls that are highly stable and can be moved by currents which has led to the prediction of a skyrmion-based artificial neuron device with leak-integrate-fire functionality. However, so far, these devices lack a refractory process, estimated to be crucial for neuronal dynamics. Here we demonstrate that a biskyrmion-based artificial neuron overcomes this insufficiency. When driven by spin-orbit torques, a single biskyrmion splits into two subskyrmions that move towards a designated location and can be detected electrically, resembling the excitation process of a neuron that fires ultimately. The attractive interaction of the two skyrmions leads to a unique trajectory: Once they reach the detector area, they automatically return to the center to reform the biskyrmion but on a different path. During this reset period, the neuron cannot fire again. Our suggested device resembles a biological neuron with the leak, integrate, fire and refractory characteristics better than all existing artificial devices so far.

中文翻译:

具有不应期的基于 Biskyrmion 的人工神经元

磁性斯格明子是高度稳定的纳米级磁性漩涡,可以通过电流移动,这导致了基于斯格明子的人工神经元设备的预测,该设备具有泄漏-集成-发射功能。然而,到目前为止,这些装置缺乏一个难以控制的过程,据估计这对神经元动力学至关重要。在这里,我们证明了基于 biskyrmion 的人工神经元克服了这种不足。当由自旋轨道扭矩驱动时,单个 biskyrmion 分裂成两个 subskyrmion,它们向指定位置移动并且可以被电检测,类似于最终触发的神经元的激发过程。两个斯格明子的吸引力相互作用导致了一条独特的轨迹:一旦它们到达检测器区域,它们就会自动返回中心以重新形成双斯格明子,但路径不同。在此重置期间,神经元无法再次触发。我们建议的装置类似于生物神经元,具有比目前所有现有人工装置更好的泄漏、整合、激发和耐火特性。
更新日期:2022-09-23
down
wechat
bug