当前位置: X-MOL 学术Energy Environ. Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Elimination of light-induced degradation at the nickel oxide-perovskite heterojunction by aprotic sulfonium layers towards long-term operationally stable inverted perovskite solar cells
Energy & Environmental Science ( IF 32.5 ) Pub Date : 2022-09-23 , DOI: 10.1039/d2ee01801b
Tianhao Wu, Luis K. Ono, Rengo Yoshioka, Chenfeng Ding, Congyang Zhang, Silvia Mariotti, Jiahao Zhang, Kirill Mitrofanov, Xiao Liu, Hiroshi Segawa, Ryota Kabe, Liyuan Han, Yabing Qi

Nickel oxide (NiOx) is a promising hole-selective contact to produce efficient inverted p-i-n structured perovskite solar cells (PSCs) due to its high carrier mobility and high transparency. However, the light-induced degradation of the NiOx–perovskite heterojunction is the main factor limiting its long-term operational lifetime. In this study, we used the time-resolved mass spectrometry technique to clarify the degradation mechanism of the NiOx-formamidinium–methylammonium iodide perovskite (a common composition for high-performance PSCs) heterojunction under operational conditions, and observed that (1) oxidation of iodide and generation of free protons under 1-sun illumination, (2) formation of volatile hydrogen cyanide, methyliodide, and ammonia at elevated temperatures, and (3) a condensation reaction between the organic components under a high vapor pressure. To eliminate these multi-step photochemical reactions, we constructed an aprotic trimethylsulfonium bromide (TMSBr) buffer layer at the NiOx/perovskite interface, which enables excellent photo-thermal stability, a matched lattice parameter with the perovskite crystal, and robust trap-passivation ability. Inverted PSCs stabilized with the TMSBr buffer layer reached the maximum efficiency of 22.1% and retained 82.8% of the initial value after continuous operation for 2000 hours under AM1.5G light illumination, which translates into a T80 lifetime of 2310 hours that is among the highest operational lifetimes for NiOx-based PSCs.

中文翻译:

通过非质子锍层消除氧化镍-钙钛矿异质结处的光致降解,实现长期运行稳定的倒置钙钛矿太阳能电池

由于其高载流子迁移率和高透明度,氧化镍(NiO x )是一种很有前途的空穴选择性接触,可用于生产高效的倒针结构钙钛矿太阳能电池(PSC)。然而,NiO x -钙钛矿异质结的光致降解是限制其长期工作寿命的主要因素。在本研究中,我们使用时间分辨质谱技术来阐明 NiO x的降解机制。-甲脒-甲基碘化铵钙钛矿(高性能 PSC 的常见成分)异质结在操作条件下,并观察到(1)在 1 次阳光照射下碘化物的氧化和自由质子的产生,(2)挥发性氰化氢的形成,甲基碘和氨在升高的温度下,以及(3)有机组分在高蒸气压下的缩合反应。为了消除这些多步光化学反应,我们在 NiO x处构建了非质子三甲基溴化锍 (TMSBr) 缓冲层/钙钛矿界面,可实现出色的光热稳定性,与钙钛矿晶体匹配的晶格参数以及强大的陷阱钝化能力。用 TMSBr 缓冲层稳定的倒置 PSC 在 AM1.5G 光照下连续运行 2000 小时后,最高效率达到 22.1%,并保持初始值的 82.8%,这意味着T 80寿命为 2310 小时,在NiO x基 PSC 的最高工作寿命。
更新日期:2022-09-23
down
wechat
bug