当前位置: X-MOL 学术Int. J. Appl. Ceram. Technol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Dielectric properties and electromagnetic wave absorbing performance of single-source-precursor-derived carbon-rich NbC-SiC-C nanocomposites
International Journal of Applied Ceramic Technology ( IF 2.1 ) Pub Date : 2022-09-22 , DOI: 10.1111/ijac.14226
Fen Li 1 , Hanzi Du 1 , Ting Chen 1 , Qikun Zhu 1 , Zhaoju Yu 1, 2
Affiliation  

For the first time, the present work reports the dielectric properties and electromagnetic wave (EMW) absorbing performance of polymer-derived carbon-rich NbC-SiC-C nanocomposites. In our previous work, NbC-SiC-C nanocomposites with the ultra-high temperature ceramic phase NbC as the main phase were synthesized with the allylhydridopolycarbosilane (AHPCS) and niobium pentachloride (NbCl5) as starting materials. On this basis, divinyl benzene was chosen as carbon-rich source and introduced into the AHPCS and NbCl5 to form a single-source-precursor. Finally, carbon-rich NbC-SiC-C nanocomposites were successfully synthesized by polymer-derived ceramic approach. Compared with ceramic samples without Nb and with lower carbon content, the carbon-rich NbC-SiC-C nanocomposites show extremely enhanced EMW absorbing performance with minimum reflection coefficient of −51.1 dB at 6.88 GHz for the thickness of 2.27 mm. As a consequence, the resultant carbon-rich NbC-SiC-C nanocomposite has to be considered as structure&function integrated material with excellent EMW absorption performance, which can be applied in hostile environment.

中文翻译:

单源前驱体衍生的富碳NbC-SiC-C纳米复合材料的介电性能和电磁波吸收性能

本工作首次报道了聚合物衍生的富碳 NbC-SiC-C 纳米复合材料的介电性能和电磁波 (EMW) 吸收性能。在我们之前的工作中,以烯丙基氢化聚碳硅烷(AHPCS)和五氯化铌(NbCl 5)为起始原料合成了以超高温陶瓷相NbC为主相的NbC-SiC-C纳米复合材料。在此基础上,选择二乙烯基苯作为富碳源引入AHPCS和NbCl 5形成单一来源的前体。最后,通过聚合物衍生陶瓷方法成功合成了富碳 NbC-SiC-C 纳米复合材料。与不含 Nb 且碳含量较低的陶瓷样品相比,富含碳的 NbC-SiC-C 纳米复合材料表现出极强的 EMW 吸收性能,厚度为 2.27 mm 时在 6.88 GHz 时的最小反射系数为 -51.1 dB。因此,所得到的富碳 NbC-SiC-C 纳米复合材料必须被视为结构与功能一体化的材料,具有优异的 EMW 吸收性能,可应用于恶劣环境。
更新日期:2022-09-22
down
wechat
bug