当前位置: X-MOL 学术Nature › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Aerial additive manufacturing with multiple autonomous robots
Nature ( IF 64.8 ) Pub Date : 2022-09-21 , DOI: 10.1038/s41586-022-04988-4
Ketao Zhang 1, 2 , Pisak Chermprayong 1 , Feng Xiao 1 , Dimos Tzoumanikas 3 , Barrie Dams 4 , Sebastian Kay 5 , Basaran Bahadir Kocer 1 , Alec Burns 5 , Lachlan Orr 1, 6 , Talib Alhinai 1 , Christopher Choi 3 , Durgesh Dattatray Darekar 5 , Wenbin Li 3 , Steven Hirschmann 5 , Valentina Soana 5 , Shamsiah Awang Ngah 4 , Clément Grillot 1, 6 , Sina Sareh 1 , Ashutosh Choubey 1 , Laura Margheri 1 , Vijay M Pawar 5 , Richard J Ball 4 , Chris Williams 4 , Paul Shepherd 4 , Stefan Leutenegger 3, 7 , Robert Stuart-Smith 5, 8 , Mirko Kovac 1, 6
Affiliation  

Additive manufacturing methods1,2,3,4 using static and mobile robots are being developed for both on-site construction5,6,7,8 and off-site prefabrication9,10. Here we introduce a method of additive manufacturing, referred to as aerial additive manufacturing (Aerial-AM), that utilizes a team of aerial robots inspired by natural builders11 such as wasps who use collective building methods12,13. We present a scalable multi-robot three-dimensional (3D) printing and path-planning framework that enables robot tasks and population size to be adapted to variations in print geometry throughout a building mission. The multi-robot manufacturing framework allows for autonomous three-dimensional printing under human supervision, real-time assessment of printed geometry and robot behavioural adaptation. To validate autonomous Aerial-AM based on the framework, we develop BuilDrones for depositing materials during flight and ScanDrones for measuring the print quality, and integrate a generic real-time model-predictive-control scheme with the Aerial-AM robots. In addition, we integrate a dynamically self-aligning delta manipulator with the BuilDrone to further improve the manufacturing accuracy to five millimetres for printing geometry with precise trajectory requirements, and develop four cementitious–polymeric composite mixtures suitable for continuous material deposition. We demonstrate proof-of-concept prints including a cylinder 2.05 metres high consisting of 72 layers of a rapid-curing insulation foam material and a cylinder 0.18 metres high consisting of 28 layers of structural pseudoplastic cementitious material, a light-trail virtual print of a dome-like geometry, and multi-robot simulations. Aerial-AM allows manufacturing in-flight and offers future possibilities for building in unbounded, at-height or hard-to-access locations.



中文翻译:

具有多个自主机器人的空中增材制造

使用静态和移动机器人的增材制造方法1、2、3、4正在开发用于现场施工5、6、7、8和场外预制9、10。在这里,我们介绍了一种增材制造方法,称为空中增材制造 (Aerial-AM),它利用了一组空中机器人,灵感来自于自然建造者11,例如使用集体建造方法的黄蜂12,13. 我们提出了一个可扩展的多机器人三维 (3D) 打印和路径规划框架,使机器人任务和人口规模能够适应整个建筑任务中打印几何形状的变化。多机器人制造框架允许在人工监督下进行自主 3D 打印、打印几何图形的实时评估和机器人行为适应。为了验证基于该框架的自主 Aerial-AM,我们开发了用于在飞行期间沉积材料的 BuilDrones 和用于测量打印质量的 ScanDrones,并将通用实时模型预测控制方案与 Aerial-AM 机器人集成。此外,我们将动态自对准 delta 机械手与 BuilDrone 集成在一起,以进一步将制造精度提高到 5 毫米,以满足具有精确轨迹要求的打印几何形状,并开发了四种适用于连续材料沉积的水泥-聚合物复合混合物。我们展示了概念验证打印,包括一个 2.05 米高的圆柱体,由 72 层快速固化的绝缘泡沫材料组成,一个 0.18 米高的圆柱体由 28 层结构假塑性水泥材料组成,这是一个轻轨虚拟打印类似圆顶的几何形状和多机器人模拟。Aerial-AM 允许在飞行中进行制造,并为在无限、高空或难以进入的位置进行构建提供了未来的可能性。并开发四种适用于连续材料沉积的水泥-聚合物复合混合物。我们展示了概念验证打印,包括一个 2.05 米高的圆柱体,由 72 层快速固化的绝缘泡沫材料组成,一个 0.18 米高的圆柱体由 28 层结构假塑性水泥材料组成,这是一个轻轨虚拟打印类似圆顶的几何形状和多机器人模拟。Aerial-AM 允许在飞行中进行制造,并为在无限、高空或难以进入的位置进行构建提供了未来的可能性。并开发四种适用于连续材料沉积的水泥-聚合物复合混合物。我们展示了概念验证打印,包括一个 2.05 米高的圆柱体,由 72 层快速固化的绝缘泡沫材料组成,一个 0.18 米高的圆柱体由 28 层结构假塑性水泥材料组成,这是一个轻轨虚拟打印类似圆顶的几何形状和多机器人模拟。Aerial-AM 允许在飞行中进行制造,并为在无限、高空或难以进入的位置进行构建提供了未来的可能性。18 米高,由 28 层结构假塑性水泥材料、圆顶状几何图形的轻轨虚拟打印和多机器人模拟组成。Aerial-AM 允许在飞行中进行制造,并为在无限、高空或难以进入的位置进行构建提供了未来的可能性。18 米高,由 28 层结构假塑性水泥材料、圆顶状几何图形的轻轨虚拟打印和多机器人模拟组成。Aerial-AM 允许在飞行中进行制造,并为在无限、高空或难以进入的位置进行构建提供了未来的可能性。

更新日期:2022-09-22
down
wechat
bug