当前位置: X-MOL 学术Adv. Electron. Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Observation of Magnéli Phase Filament Formation in MoOx Artificial Synapse
Advanced Electronic Materials ( IF 6.2 ) Pub Date : 2022-09-18 , DOI: 10.1002/aelm.202200729
Pulickal Sasi Subin 1 , Aldrin Antony 1, 2, 3 , Kachirayil Joseph Saji 1, 3, 4 , Madambi Kunjukuttan Ezhuthachan Jayaraj 1, 5
Affiliation  

Artificial synapses are the basic building block of artificial neural networks capable of neuromorphic computing, which might overtake conventional digital computing in areas like artificial intelligence, deep learning, and in-memory computation. Neuromorphic computing with artificial synapses opens a new window for fast in-memory computing and image processing. In this paper, an MoOx-based artificial synapse that mimics almost all characteristics of bio-synapses is demonstrated. The fabricated device shows excellent synaptic properties such as potentiation, depression, forgetting, paired-pulse facilitation, and spike-timing-dependent plasticity. The mechanism behind all the observed characteristics has been well explained. A lateral-type device is also designed and tested in order to confirm the conductance change during the application of electrical pulses. Energy-dispersive X-ray analysis and Raman analysis reveal that the switching mechanism is primarily due to the formation and rupture of conducting filaments composed of Magnéli phases of MoOx. Since the fabricated ITO/MoOx/Ag artificial synapse exhibits excellent synaptic characteristics and the mechanism is thoroughly explored, this study will contribute to the fabrication of neural networks and future neuromorphic computing.

中文翻译:

MoOx 人工突触中 Magnéli 相细丝形成的观察

人工突触是能够进行神经形态计算的人工神经网络的基本构建块,它可能会在人工智能、深度学习和内存计算等领域超越传统的数字计算。具有人工突触的神经形态计算为快速内存计算和图像处理打开了一个新窗口。在本文中,MoO x基于模拟几乎所有生物突触特征的人工突触被证明。制造的设备显示出出色的突触特性,例如增强、抑制、遗忘、成对脉冲促进和尖峰时间依赖性可塑性。所有观察到的特征背后的机制都得到了很好的解释。还设计并测试了横向型装置,以确认电脉冲应用期间的电导变化。能量色散X射线分析和拉曼分析表明,开关机制主要是由于由MoO x 的Magnéli相组成的导电丝的形成和断裂。由于制造的 ITO/MoO x/Ag 人工突触表现出优异的突触特性,并深入探索其机制,本研究将有助于神经网络的构建和未来的神经形态计算。
更新日期:2022-09-18
down
wechat
bug