当前位置: X-MOL 学术arXiv.cond-mat.dis-nn › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Tackling the subsampling problem to infer collective properties from limited data
arXiv - PHYS - Disordered Systems and Neural Networks Pub Date : 2022-09-12 , DOI: arxiv-2209.05548
Anna Levina, Viola Priesemann, ohannes Zierenberg

Complex systems are fascinating because their rich macroscopic properties emerge from the interaction of many simple parts. Understanding the building principles of these emergent phenomena in nature requires assessing natural complex systems experimentally. However, despite the development of large-scale data-acquisition techniques, experimental observations are often limited to a tiny fraction of the system. This spatial subsampling is particularly severe in neuroscience, where only a tiny fraction of millions or even billions of neurons can be individually recorded. Spatial subsampling may lead to significant systematic biases when inferring the collective properties of the entire system naively from a subsampled part. To overcome such biases, powerful mathematical tools have been developed in the past. In this perspective, we overview some issues arising from subsampling and review recently developed approaches to tackle the subsampling problem. These approaches enable one to assess, e.g., graph structures, collective dynamics of animals, neural network activity, or the spread of disease correctly from observing only a tiny fraction of the system. However, our current approaches are still far from having solved the subsampling problem in general, and hence we conclude by outlining what we believe are the main open challenges. Solving these challenges alongside the development of large-scale recording techniques will enable further fundamental insights into the working of complex and living systems.

中文翻译:

解决二次抽样问题以从有限的数据中推断集体属性

复杂系统之所以引人入胜,是因为它们丰富的宏观特性来自许多简单部分的相互作用。了解自然界中这些涌现现象的构建原理需要通过实验评估自然复杂系统。然而,尽管大规模数据采集技术得到了发展,但实验观察通常仅限于系统的一小部分。这种空间二次采样在神经科学中尤为严重,其中只能单独记录数百万甚至数十亿神经元的一小部分。当从子采样部分天真地推断整个系统的集体属性时,空间子采样可能会导致显着的系统偏差。为了克服这种偏见,过去已经开发了强大的数学工具。从这个角度来看,我们概述了子采样引起的一些问题,并回顾了最近开发的解决子采样问题的方法。这些方法使人们能够通过仅观察系统的一小部分来正确评估图结构、动物的集体动态、神经网络活动或疾病的传播。然而,我们目前的方法仍然远未解决一般的二次抽样问题,因此我们总结了我们认为主要的开放挑战。随着大规模记录技术的发展,解决这些挑战将有助于进一步深入了解复杂和生命系统的工作。动物的集体动态、神经网络活动或疾病的传播正确地只观察系统的一小部分。然而,我们目前的方法仍然远未解决一般的二次抽样问题,因此我们总结了我们认为主要的开放挑战。随着大规模记录技术的发展,解决这些挑战将有助于进一步深入了解复杂和生命系统的工作。动物的集体动态、神经网络活动或疾病的传播正确地只观察系统的一小部分。然而,我们目前的方法仍然远未解决一般的二次抽样问题,因此我们总结了我们认为主要的开放挑战。随着大规模记录技术的发展,解决这些挑战将有助于进一步深入了解复杂和生命系统的工作。
更新日期:2022-09-14
down
wechat
bug