当前位置: X-MOL 学术Nat. Photon. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A diamond voltage imaging microscope
Nature Photonics ( IF 35.0 ) Pub Date : 2022-09-08 , DOI: 10.1038/s41566-022-01064-1
D. J. McCloskey, N. Dontschuk, A. Stacey, C. Pattinson, A. Nadarajah, L. T. Hall, L. C. L. Hollenberg, S. Prawer, D. A. Simpson

Technologies that capture the complex electrical dynamics occurring in biological systems, across fluid membranes and at solid–liquid interfaces are important for furthering fundamental understanding and innovation in diverse fields from neuroscience to energy storage. However, the capabilities of existing voltage imaging techniques utilizing microelectrode arrays, scanning probes or optical fluorescence methods are limited by resolution, scan speed and photostability, respectively. Here we report an optoelectronic voltage imaging system that overcomes these limitations by using nitrogen-vacancy defects as charge-sensitive fluorescent reporters embedded within a transparent semiconducting diamond device. Electrochemical tuning of the diamond surface termination enables photostable optical voltage imaging with a quantitative linear response at biologically relevant voltages and timescales. This technology represents a major step towards label-free, large-scale and long-term voltage recording of physical and biological systems with sub-micrometre spatial resolution.



中文翻译:

金刚石电压成像显微镜

捕捉生物系统、跨流体膜和固液界面中发生的复杂电动力学的技术对于促进从神经科学到能量存储等不同领域的基本理解和创新非常重要。然而,利用微电极阵列、扫描探针或光学荧光方法的现有电压成像技术的能力分别受到分辨率、扫描速度和光稳定性的限制。在这里,我们报告了一种光电电压成像系统,该系统通过使用氮空位缺陷作为嵌入透明半导体金刚石器件中的电荷敏感荧光报告器来克服这些限制。金刚石表面终止的电化学调谐使光稳定的光学电压成像能够在生物学相关的电压和时间尺度上具有定量的线性响应。该技术代表了朝着以亚微米空间分辨率对物理和生物系统进行无标记、大规模和长期电压记录迈出的重要一步。

更新日期:2022-09-09
down
wechat
bug