当前位置: X-MOL 学术Acta Astronaut. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Station-keeping for a solar sail during lander/probe deployment using feedback control
Acta Astronautica ( IF 3.5 ) Pub Date : 2022-09-06 , DOI: 10.1016/j.actaastro.2022.09.005
Iain Moore , Matteo Ceriotti , Colin R. McInnes

Due to its propellantless nature, a solar sail can provide the primary propulsion system for a high energy mission, such as that of a multiple asteroid rendezvous. Upon arrival at an asteroid, it is often desirable to interact with the surface of the body, such as for sample extraction. The deployment of a lander from a solar sail carries the difficulty of an instantaneous, and sometimes considerable, change to the system dynamics at the point of separation. This paper investigates the effects of changing sail performance during the release of multiple “ChipSat” probes as well as a large MASCOT-type lander and the control of the sail into a positional hold at an equilibrium point or periodic orbit. In one scenario, 20 ChipSat probes are released, with one-hour spacing between each release. The sail is then controlled to maintain the sailcraft close to the initial deployment point. The performance of a Linear Quadratic Regulator (LQR) is compared with maintaining a fixed sail attitude after deployment. In a second scenario, at the point of separation of the larger MASCOT-type lander, there will be a considerable instantaneous change in the sail characteristic acceleration, as opposed to the gradual small change for the staggered deployment of the small ChipSat probes. It is shown that the Time-Delayed Feedback Control (TDFC) method is effective in controlling the orbit of the sail after this deployment. The sail converges to an orbit in the same region of phase space when deployment is made from both a lower and higher inclination orbit.



中文翻译:

使用反馈控制在着陆器/探测器部署期间对太阳帆进行定位

由于其无推进剂的性质,太阳帆可以为高能任务提供主要推进系统,例如多颗小行星会合的任务。到达小行星后,通常需要与身体表面相互作用,例如用于样品提取。从太阳帆上部署着陆器带来的困难是在分离点对系统动力学进行瞬时的,有时甚至是相当大的改变。本文研究了在多个“ChipSat”探测器以及大型 MASCOT 型着陆器的释放过程中改变帆性能的影响,以及将帆控制到平衡点或周期轨道的位置保持。在一种情况下,发布了 20 个 ChipSat 探测器,每次发布间隔一小时。然后控制帆以使帆船保持在初始部署点附近。将线性二次调节器 (LQR) 的性能与部署后保持固定的帆姿态进行比较。在第二种情况下,在较大的 MASCOT 型着陆器的分离点处,航行特性加速度将发生相当大的瞬时变化,而不是小型 ChipSat 探测器的交错部署的逐渐小的变化。结果表明,时间延迟反馈控制(TDFC)方法在这次部署后控制帆的轨道是有效的。当从较低和较高倾角轨道进行部署时,帆会聚到相空间的同一区域中的轨道上。将线性二次调节器 (LQR) 的性能与部署后保持固定的帆姿态进行比较。在第二种情况下,在较大的 MASCOT 型着陆器的分离点处,航行特性加速度将发生相当大的瞬时变化,而不是小型 ChipSat 探测器的交错部署的逐渐小的变化。结果表明,时间延迟反馈控制(TDFC)方法在这次部署后控制帆的轨道是有效的。当从较低和较高倾角轨道进行部署时,帆会聚到相空间的同一区域中的轨道上。将线性二次调节器 (LQR) 的性能与部署后保持固定的帆姿态进行比较。在第二种情况下,在较大的 MASCOT 型着陆器的分离点处,航行特性加速度将发生相当大的瞬时变化,而不是小型 ChipSat 探测器的交错部署的逐渐小的变化。结果表明,时间延迟反馈控制(TDFC)方法在这次部署后控制帆的轨道是有效的。当从较低和较高倾角轨道进行部署时,帆会聚到相空间的同一区域中的轨道上。与小型 ChipSat 探测器交错部署的逐渐小变化相反,航行特性加速度将发生相当大的瞬时变化。结果表明,时间延迟反馈控制(TDFC)方法在这次部署后控制帆的轨道是有效的。当从较低和较高倾角轨道进行部署时,帆会聚到相空间的同一区域中的轨道上。与小型 ChipSat 探测器交错部署的逐渐小变化相反,航行特性加速度将发生相当大的瞬时变化。结果表明,时间延迟反馈控制(TDFC)方法在这次部署后控制帆的轨道是有效的。当从较低和较高倾角轨道进行部署时,帆会聚到相空间的同一区域中的轨道上。

更新日期:2022-09-06
down
wechat
bug