当前位置: X-MOL 学术Quantum › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Observability of fidelity decay at the Lyapunov rate in few-qubit quantum simulations
Quantum ( IF 6.4 ) Pub Date : 2022-09-08 , DOI: 10.22331/q-2022-09-08-799
Max D. Porter 1 , Ilon Joseph 1
Affiliation  

In certain regimes, the fidelity of quantum states will decay at a rate set by the classical Lyapunov exponent. This serves both as one of the most important examples of the quantum-classical correspondence principle and as an accurate test for the presence of chaos. While detecting this phenomenon is one of the first useful calculations that noisy quantum computers without error correction can perform [G. Benenti et al., Phys. Rev. E 65, 066205 (2001)], a thorough study of the quantum sawtooth map reveals that observing the Lyapunov regime is just beyond the reach of present-day devices. We prove that there are three bounds on the ability of any device to observe the Lyapunov regime and give the first quantitatively accurate description of these bounds: (1) the Fermi golden rule decay rate must be larger than the Lyapunov rate, (2) the quantum dynamics must be diffusive rather than localized, and (3) the initial decay rate must be slow enough for Lyapunov decay to be observable. This last bound, which has not been recognized previously, places a limit on the maximum amount of noise that can be tolerated. The theory implies that an absolute minimum of 6 qubits is required. Recent experiments on IBM-Q and IonQ imply that some combination of a noise reduction by up to 100$\times$ per gate and large increases in connectivity and gate parallelization are also necessary. Finally, scaling arguments are given that quantify the ability of future devices to observe the Lyapunov regime based on trade-offs between hardware architecture and performance.

中文翻译:

在少量子比特量子模拟中以 Lyapunov 速率观察保真度衰减

在某些情况下,量子态的保真度将以经典李雅普诺夫指数设定的速率衰减。这既是量子经典对应原理最重要的例子之一,也是对混沌存在的准确测试。虽然检测这种现象是没有纠错的嘈杂量子计算机可以执行的首批有用计算之一 [G. Benenti 等人,物理学。Rev. E 65, 066205 (2001)],对量子锯齿图的彻底研究表明,观察 Lyapunov 状态是当今设备无法企及的。我们证明了任何设备观察李雅普诺夫状态的能力存在三个界限,并首次对这些界限进行定量准确的描述:(1)费米黄金法则衰减率必须大于李雅普诺夫率,(2) 量子动力学必须是扩散的而不是局域的,(3) 初始衰减率必须足够慢,才能观察到 Lyapunov 衰减。最后一个界限,以前没有被认识到,对可以容忍的最大噪声量进行了限制。该理论暗示至少需要 6 个量子比特。最近在 IBM-Q 和 IonQ 上的实验表明,每个门的噪声降低高达 100$\times$ 以及连接性和门并行化的大幅增加也是必要的。最后,基于硬件架构和性能之间的权衡,给出了量化未来设备观察 Lyapunov 机制的能力的缩放参数。(3) 初始衰变速率必须足够慢,才能观察到李雅普诺夫衰变。最后一个界限,以前没有被认识到,对可以容忍的最大噪声量进行了限制。该理论暗示至少需要 6 个量子比特。最近在 IBM-Q 和 IonQ 上的实验表明,每个门的噪声降低高达 100$\times$ 以及连接性和门并行化的大幅增加也是必要的。最后,基于硬件架构和性能之间的权衡,给出了量化未来设备观察 Lyapunov 机制的能力的缩放参数。(3) 初始衰变速率必须足够慢,才能观察到李雅普诺夫衰变。最后一个界限,以前没有被认识到,对可以容忍的最大噪声量进行了限制。该理论暗示至少需要 6 个量子比特。最近在 IBM-Q 和 IonQ 上的实验表明,每个门的噪声降低高达 100$\times$ 以及连接性和门并行化的大幅增加也是必要的。最后,基于硬件架构和性能之间的权衡,给出了量化未来设备观察 Lyapunov 机制的能力的缩放参数。最近在 IBM-Q 和 IonQ 上的实验表明,每个门的噪声降低高达 100$\times$ 以及连接性和门并行化的大幅增加也是必要的。最后,基于硬件架构和性能之间的权衡,给出了量化未来设备观察 Lyapunov 机制的能力的缩放参数。最近在 IBM-Q 和 IonQ 上的实验表明,每个门的噪声降低高达 100$\times$ 以及连接性和门并行化的大幅增加也是必要的。最后,基于硬件架构和性能之间的权衡,给出了量化未来设备观察 Lyapunov 机制的能力的缩放参数。
更新日期:2022-09-08
down
wechat
bug