当前位置: X-MOL 学术Phys. Rev. X › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Generation of a Single-Cycle Acoustic Pulse: A Scalable Solution for Transport in Single-Electron Circuits
Physical Review X ( IF 12.5 ) Pub Date : 2022-09-07 , DOI: 10.1103/physrevx.12.031035
Junliang Wang, Shunsuke Ota, Hermann Edlbauer, Baptiste Jadot, Pierre-André Mortemousque, Aymeric Richard, Yuma Okazaki, Shuji Nakamura, Arne Ludwig, Andreas D. Wieck, Matias Urdampilleta, Tristan Meunier, Tetsuo Kodera, Nobu-Hisa Kaneko, Shintaro Takada, Christopher Bäuerle

The synthesis of single-cycle pulses of compressed light and microwave signals sparked novel areas of fundamental research. In the field of acoustics, however, such a generation has not been introduced yet. For numerous applications, the large spatial extent of surface acoustic waves (SAW) causes unwanted perturbations and limits the accuracy of physical manipulations. Particularly, this restriction applies to SAW-driven quantum experiments with single flying electrons, where extra modulation renders the exact position of the transported electron ambiguous and leads to undesired spin mixing. Here, we address this challenge by demonstrating single-shot chirp synthesis of a strongly compressed acoustic pulse. Employing this solitary SAW pulse to transport a single electron between distant quantum dots with an efficiency exceeding 99%, we show that chirp synthesis is competitive with regular transduction approaches. Performing a time-resolved investigation of the SAW-driven sending process, we outline the potential of the chirped SAW pulse to synchronize single-electron transport from many quantum-dot sources. By superimposing multiple pulses, we further point out the capability of chirp synthesis to generate arbitrary acoustic waveforms tailorable to a variety of (opto)nanomechanical applications. Our results shift the paradigm of compressed pulses to the field of acoustic phonons and pave the way for a SAW-driven platform of single-electron transport that is precise, synchronized, and scalable.

中文翻译:

单周期声脉冲的产生:单电子电路传输的可扩展解决方案

压缩光和微波信号的单周期脉冲的合成引发了基础研究的新领域。然而,在声学领域,还没有引入这样的一代。对于许多应用,表面声波 (SAW) 的大空间范围会导致不必要的扰动并限制物理操作的准确性。特别是,这种限制适用于使用单个飞行电子的 SAW 驱动的量子实验,其中额外的调制会使传输电子的确切位置不明确,并导致不希望的自旋混合。在这里,我们通过演示强压缩声脉冲的单次啁啾合成来解决这一挑战。利用这种孤立的 SAW 脉冲在遥远的量子点之间传输单个电子,效率超过 99%,我们表明,啁啾合成与常规转导方法具有竞争力。通过对 SAW 驱动的发送过程进行时间分辨研究,我们概述了啁啾 SAW 脉冲同步来自许多量子点源的单电子传输的潜力。通过叠加多个脉冲,我们进一步指出了啁啾合成的能力,可以生成适用于各种(光)纳米机械应用的任意声波波形。我们的结果将压缩脉冲的范式转移到声子领域,并为 SAW 驱动的精确、同步和可扩展的单电子传输平台铺平了道路。我们概述了啁啾声表面波脉冲同步来自许多量子点源的单电子传输的潜力。通过叠加多个脉冲,我们进一步指出了啁啾合成的能力,可以生成适用于各种(光)纳米机械应用的任意声波波形。我们的结果将压缩脉冲的范式转移到声子领域,并为 SAW 驱动的精确、同步和可扩展的单电子传输平台铺平了道路。我们概述了啁啾声表面波脉冲同步来自许多量子点源的单电子传输的潜力。通过叠加多个脉冲,我们进一步指出了啁啾合成的能力,可以生成适用于各种(光)纳米机械应用的任意声波波形。我们的结果将压缩脉冲的范式转移到声子领域,并为 SAW 驱动的精确、同步和可扩展的单电子传输平台铺平了道路。
更新日期:2022-09-07
down
wechat
bug