当前位置: X-MOL 学术Ann. N. Y. Acad. Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A 90-channel triaxial magnetoencephalography system using optically pumped magnetometers
Annals of the New York Academy of Sciences ( IF 5.2 ) Pub Date : 2022-09-05 , DOI: 10.1111/nyas.14890
Molly Rea 1 , Elena Boto 1 , Niall Holmes 1 , Ryan Hill 1 , James Osborne 2 , Natalie Rhodes 1 , James Leggett 1 , Lukas Rier 1 , Richard Bowtell 1 , Vishal Shah 2 , Matthew J Brookes 1
Affiliation  

Magnetoencephalography (MEG) measures the small magnetic fields generated by current flow in neural networks, providing a noninvasive metric of brain function. MEG is well established as a powerful neuroscientific and clinical tool. However, current instrumentation is hampered by cumbersome cryogenic field-sensing technologies. In contrast, MEG using optically pumped magnetometers (OPM-MEG) employs small, lightweight, noncryogenic sensors that provide data with higher sensitivity and spatial resolution, a natural scanning environment (including participant movement), and adaptability to any age. However, OPM-MEG is new and the optimum way to design a system is unknown. Here, we construct a novel, 90-channel triaxial OPM-MEG system and use it to map motor function during a naturalistic handwriting task. Results show that high-precision magnetic field control reduced background fields to ∼200 pT, enabling free participant movement. Our triaxial array offered twice the total measured signal and better interference rejection compared to a conventional (single-axis) design. We mapped neural oscillatory activity to the sensorimotor network, demonstrating significant differences in motor network activity and connectivity for left-handed versus right-handed handwriting. Repeatability across scans showed that we can map electrophysiological activity with an accuracy ∼4 mm. Overall, our study introduces a novel triaxial OPM-MEG design and confirms its potential for high-performance functional neuroimaging.

中文翻译:

使用光泵磁强计的 90 通道三轴脑磁图系统

脑磁图 (MEG) 测量神经网络中电流产生的小磁场,提供大脑功能的非侵入性指标。MEG 已成为一种强大的神经科学和临床工具。然而,目前的仪器受到繁琐的低温场传感技术的阻碍。相比之下,使用光泵磁力计 (OPM-MEG) 的 MEG 采用小型、轻型、非低温传感器,可提供具有更高灵敏度和空间分辨率的数据、自然扫描环境(包括参与者移动)以及对任何年龄的适应性。然而,OPM-MEG 是新的,设计系统的最佳方法是未知的。在这里,我们构建了一个新颖的 90 通道三轴 OPM-MEG 系统,并用它来映射自然手写任务期间的运动功能。结果表明,高精度磁场控制可将背景场降低至 ~200 pT,从而使参与者能够自由移动。与传统(单轴)设计相比,我们的三轴阵列提供了两倍的总测量信号和更好的抗干扰能力。我们将神经振荡活动映射到感觉运动网络,证明左手手写与右手手写的运动网络活动和连通性存在显着差异。跨扫描的可重复性表明我们可以以 ∼4 mm 的精度绘制电生理活动图。总的来说,我们的研究介绍了一种新颖的三轴 OPM-MEG 设计,并证实了其在高性能功能神经成像方面的潜力。与传统(单轴)设计相比,我们的三轴阵列提供了两倍的总测量信号和更好的抗干扰能力。我们将神经振荡活动映射到感觉运动网络,证明左手手写与右手手写的运动网络活动和连通性存在显着差异。跨扫描的可重复性表明我们可以以 ∼4 mm 的精度绘制电生理活动图。总的来说,我们的研究介绍了一种新颖的三轴 OPM-MEG 设计,并证实了其在高性能功能神经成像方面的潜力。与传统(单轴)设计相比,我们的三轴阵列提供了两倍的总测量信号和更好的抗干扰能力。我们将神经振荡活动映射到感觉运动网络,证明左手手写与右手手写的运动网络活动和连通性存在显着差异。跨扫描的可重复性表明我们可以以 ∼4 mm 的精度绘制电生理活动图。总体而言,我们的研究介绍了一种新型三轴 OPM-MEG 设计,并证实了其在高性能功能神经成像方面的潜力。跨扫描的可重复性表明我们可以以 ∼4 mm 的精度绘制电生理活动图。总的来说,我们的研究介绍了一种新颖的三轴 OPM-MEG 设计,并证实了其在高性能功能神经成像方面的潜力。跨扫描的可重复性表明我们可以以 ∼4 mm 的精度绘制电生理活动图。总的来说,我们的研究介绍了一种新颖的三轴 OPM-MEG 设计,并证实了其在高性能功能神经成像方面的潜力。
更新日期:2022-09-05
down
wechat
bug