当前位置: X-MOL 学术Cement Concrete Comp. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Microstructural investigation of lithium slag geopolymer pastes containing silica fume and fly ash as additive chemical modifiers
Cement and Concrete Composites ( IF 10.5 ) Pub Date : 2022-09-06 , DOI: 10.1016/j.cemconcomp.2022.104736
Usman Javed , Faiz Uddin Ahmed Shaikh , Prabir Kumar Sarker

Lithium slag is an industrial by-product obtained after lithium extraction from spodumene ore. The higher concentration of sulfate ions (SO4−2) in the form of gypsum/anhydrite makes it a chemically unviable binder. This research investigates the dilution of the sulphatic component in pore solution by additive incorporation of silica fume and fly ash as chemical modifiers in the lithium slag geopolymer. The setting behavior, detailed microstructural properties, mineral phase quantitative analysis, and compressive strength of lithium slag geopolymer containing fly ash and silica fume were studied. The increasing silica to alumina ratios (Si/Al) by incorporating silica fume in sodium tetraborate added geopolymer resulted in the set retardation after the setting accelerated at Si/Al ratio of 3.5. Similarly, the set retardation was observed for all fly ash replaced lithium slag geopolymers marked by the lower dissolution of SO4−2 ions in pore solution. The fragmented and porous N-(C)-A-S-H gel in lithium slag geopolymer densified by additive incorporation of silica fume and fly ash due to suppressed formation of SO4−2 in pore solution, thus increasing the compressive strength. The main binding zeolite phases quantified in mineral and crystal phase analysis of fly ash replaced geopolymer were mordenite, anorthite, analcime, and calcium chabazite, whereas for silica fume incorporated geopolymer were mordenite, anorthite, analcime, and sodium clinoptilolite. Thus, the lithium slag can be a promising geopolymer precursor along with other supplementary cementitious materials. However, further research is suggested for its chemical viability as a sole geopolymer binder.



中文翻译:

含硅灰和粉煤灰作为添加剂化学改性剂的锂矿渣地质聚合物浆料的微观结构研究

锂渣是从锂辉石矿石中提锂后获得的工业副产品。石膏/硬石膏形式的较高浓度的硫酸根离子 (SO 4 -2 ) 使其成为化学上不可行的粘合剂。本研究通过在锂矿渣地质聚合物中添加硅灰和飞灰作为化学改性剂,研究了硫酸盐组分在孔隙溶液中的稀释。研究了含粉煤灰和硅灰的锂矿渣地质聚合物凝结行为、详细的微观结构性质、矿物相定量分析和抗压强度。通过将硅灰掺入四硼酸钠添加的地质聚合物中来增加二氧化硅与氧化铝的比率 (Si/Al) 导致集合凝固后的延迟在 Si/Al 比为 3.5 时加速。类似地,对于所有以SO 4 -2离子在孔隙溶液中的较低溶解度为特征的被粉煤灰替代的锂矿渣地质聚合物观察到凝固延迟。由于抑制了孔隙溶液中 SO 4 -2的形成,锂矿渣地质聚合物中的碎片化和多孔 N-(C)-ASH 凝胶通过添加硅灰和粉煤灰而致密,从而提高了抗压强度。在粉煤灰替代地质聚合物的矿物和晶相分析中量化的主要结合沸石相是丝光沸石、钙长石、方沸石和菱沸石钙,而对于硅灰掺入的地质聚合物是丝光沸石、钙长石、方沸石和钠斜发沸石。因此,锂渣与其他补充胶凝材料一起可以成为有前途的地质聚合物前体。然而,建议进一步研究其作为唯一地质聚合物粘合剂的化学可行性。

更新日期:2022-09-06
down
wechat
bug