当前位置: X-MOL 学术Microsyst. Technol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Microfluidic system for extraterrestrial artificial photosynthetic device
Microsystem Technologies ( IF 2.1 ) Pub Date : 2022-09-03 , DOI: 10.1007/s00542-022-05370-0
Qingjun Yang , Rizhi Dong , Shangru Yang , Rui Zhu

In situ resource utilization (ISRU) is an important way to provide oxygen and fuel for human survival in future extraterrestrial exploration. At present, the main ways of in-situ resource utilization are Sabatier method and Bosch reduction method, however, the reaction conditions are harsh and the energy consumption is huge. In this study, artificial photosynthesis technology was applied to in-situ resource utilization. By using the microfluidic technology to accurately control the flow of CO2 and electrolyte, the reaction rate and reaction efficiency are greatly improved. In this paper, the flow under different gas–liquid velocity is studied and the Taylor flow is selected as the reaction flow pattern. Firstly, the mathematical model of bubble formation and flow is established, and the relevant variation parameters of Taylor unit and the movement of bubbles in the pipeline under different gas–liquid velocity are explored. Then, the reaction situation under different bubble motion states is analyzed through simulation, and the cloud diagram of the reaction is obtained. The liquid phase mass transfer coefficient, specific surface area and defined mass transfer rate parameters are used to analyze the reaction. Finally, the structure of the microchip and the experimental platform are introduced. The experimental results show that the reaction state is the best when the gas flow velocity is 0.083 m s−1, the liquid flow velocity is 0.167 m s−1, and the voltage value is 3.1 V.



中文翻译:

地外人工光合装置的微流控系统

就地资源利用(ISRU)是未来地外探索中为人类生存提供氧气和燃料的重要途径。目前资源就地利用的主要方式是Sabatier法和Bosch还原法,但反应条件苛刻,能耗巨大。本研究将人工光合作用技术应用于就地资源利用。通过使用微流控技术精确控制CO 2的流量和电解质,大大提高了反应速率和反应效率。本文研究了不同气液速度下的流动,选择泰勒流作为反应流型。首先建立了气泡形成与流动的数学模型,探讨了泰勒单元的相关变化参数以及不同气液速度下气泡在管道中的运动。然后通过仿真分析不同气泡运动状态下的反应情况,得到反应云图。液相传质系数、比表面积和定义的传质速率参数用于分析反应。最后介绍了微芯片的结构和实验平台。-1,液体流速为0.167 m s -1,电压值为3.1 V。

更新日期:2022-09-04
down
wechat
bug