当前位置: X-MOL 学术Electrophoresis › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Numerical investigation of field-effect control on hybrid electrokinetics for continuous and position-tunable nanoparticle concentration in microfluidics
Electrophoresis ( IF 2.9 ) Pub Date : 2022-08-28 , DOI: 10.1002/elps.202200146
Ye Tao 1 , Weiyu Liu 2 , Chunlei Song 1 , Zhenyou Ge 1 , Zhaokai Li 3 , Yanbo Li 2 , Yukun Ren 1, 4
Affiliation  

We introduce herein an effective way for continuous delivery and position-switchable trapping of nanoparticles via field-effect control on hybrid electrokinetics (HEK). Flow field-effect transistor exploiting HEK delicately combines horizontal linear electroosmosis and transversal nonlinear electroosmosis of a shiftable flow stagnation line (FSL) on gate terminals under DC-biased AC forcing. The microfluidic nanoparticle concentrator proposed herein makes use of a simple device geometry, in which an individual or a series of planar metal strips serving as gate electrode (GE) are subjected to a hybrid gate voltage signal and arranged in parallel between a pair of 3D driving electrodes. On the application of a DC-biased AC electric field across channel length direction, all the GE are electrochemically polarized, and the action of imposed hybrid electric field on the multiple-frequency bipolar counterions within the composite-induced double layer generates two counter-rotating induced-charge electroosmotic (ICEO) micro-vortices on top of each GE. Symmetry breaking in ICEO flow profile occurs once the gate voltage deviates from natural floating potential of corresponding GE. The gate voltage offset not only results in an additional pump motion of working fluid for enhanced electroosmotic transport but also directly changes the location of FSL where nanoparticles are preferentially collected by field-effect HEK. Our results of field-effect control on HEK are supposed to guide an elaborate design of flexible electrokinetic frameworks embedding coplanar metal strips for a high degree of freedom analyte manipulation in modern micro-total-analytical systems.

中文翻译:

微流体中连续和位置可调的纳米粒子浓度混合电动学场效应控制的数值研究

我们在此介绍了一种通过对混合电动学 (HEK) 的场效应控制来连续输送和位置可切换地捕获纳米粒子的有效方法。利用 HEK 的流场效应晶体管巧妙地结合了直流偏置交流强制下栅极端子上可移动流动停滞线 (FSL) 的水平线性电渗和横向非线性电渗。本文提出的微流控纳米粒子集中器利用简单的装置几何形状,其中用作栅电极(GE)的单个或一系列平面金属条受到混合栅极电压信号的影响,并平行排列在一对 3D 驱动之间电极。在跨通道长度方向应用直流偏置交流电场时,所有 GE 都被电化学极化,施加混合电场对复合诱导双层内的多频率双极抗衡离子的作用在每个 GE 顶部产生两个反向旋转感应电荷电渗 (ICEO) 微涡。一旦栅极电压偏离相应 GE 的自然浮动电位,就会发生 ICEO 流动曲线的对称性破缺。栅极电压偏移不仅导致工作流体的额外泵运动以增强电渗传输,而且还直接改变 FSL 的位置,其中纳米粒子被场效应 HEK 优先收集。我们对 HEK 的场效应控制结果应该可以指导在现代微全分析系统中嵌入共面金属条的柔性电动框架的精心设计,以实现高自由度的分析物操作。
更新日期:2022-08-28
down
wechat
bug