当前位置: X-MOL 学术Chem. Geol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Sulfur mass-independent fractionation during SO2 photolysis in low-temperature/pressure atmospheres
Chemical Geology ( IF 3.9 ) Pub Date : 2022-08-18 , DOI: 10.1016/j.chemgeo.2022.121064
Yoshiaki Endo , Yasuhito Sekine , Yuichiro Ueno

Mass-independent fractionation of sulfur isotopes (MIF-S) has been observed in Archean sedimentary rocks and modern stratospheric sulfate aerosol (SSA). Photolysis of SO2 is known to cause significant MIF-S and could be related to the observed MIF-S. However, previous experiments with SO2 photolysis at room temperature, or at low temperatures and atmospheric pressure, did not quantitatively explain quadruple sulfur isotopic compositions (δ34S, Δ33S, and Δ36S values) of the Archean sedimentary rocks and the modern SSA. Here we describe sulfur isotopic fractionation during SO2 photolysis including isotopic self-shielding at low temperatures (down to 228 K) and low pressures (from 5.8 to 10 kPa) where pressure broadening of SO2 becomes negligible. Results indicate that magnitudes of sulfur isotopic fractionation factors (34ε, 33E, and 36E values, where 33E = 33ε – 1000 × [(1 + 34ε/1000)0.515 − 1] and 36E = 36ε − 1000 × [(1 + 36ε/1000)1.90 − 1]) increase with decreasing temperature, with values at 228 K being about four times those at 296 K (34ε of up to +344‰). Meanwhile, 33E/34ε and 36E/33E ratios are roughly independent of temperature over the temperature range (by approximately +0.1 and − 3.1, respectively), although the 33E/34ε ratios slightly increase with decreasing temperature, ranging from ~ + 0.08 to ~ + 0.13. A two-component mixing model involving SO2 oxidation by OH and SO2 photolysis in the stratosphere reproduces δ34S and Δ33S values of modern SSA when the contribution ratio of SO2 photolysis to SO3 production is ~20%. The contribution ratio of ~20% is consistent with a previous estimation by Whitehill et al. (2015). However, Δ33S/δ34S ratios at low temperatures are far from those of Archean sedimentary rocks, calling for an additional mechanism (or mechanisms) to explain Archean MIF-S.



中文翻译:

低温/压力气氛中 SO2 光解过程中与硫质量无关的分馏

在太古代沉积岩和现代平流层硫酸盐气溶胶 (SSA) 中观察到与质量无关的硫同位素分馏 (MIF-S)。已知 SO 2的光解会导致显着的 MIF-S,并且可能与观察到的 MIF-S 有关。然而,先前在室温或低温和大气压下进行 SO 2光解的实验并未定量解释太古代沉积岩和现代SSA。在这里,我们描述了 SO 2过程中的硫同位素分馏光解包括在低温(低至 228 K)和低压(从 5.8 至 10 kPa)下的同位素自屏蔽,其中 SO 2的压力展宽可以忽略不计。结果表明硫同位素分馏因子的大小(34 ε、33 E 和36 E 值,其中33 E =  33 ε – 1000 × [(1 +  34 ε/1000) 0.515  - 1] 和36 E =  36 ε - 1000 × [(1 +  36 ε/1000) 1.90  - 1]) 随着温度的降低而增加,228 K 时的值约为 296 K 时的四倍(34 ε 高达 +344‰)。同时,33 E/ 34 ε 和36 E/ 33 E 比率在整个温度范围内大致与温度无关(分别约为 +0.1 和 - 3.1),尽管33 E/ 34 ε 比率随着温度的降低略有增加,范围从 ~ + 0.08 至 ~ + 0.13。当SO 2光解对SO 3的贡献比时,由OH 氧化SO 2 和SO 2解在平流层的双组分混合模型再现了现代SSA的δ 34 S 和Δ 33 S 值产量约为 20%。约 20% 的贡献率与 Whitehill 等人先前的估计一致。(2015 年)。然而,低温下的 Δ 33 S/δ 34 S 比值与太古代沉积岩相差甚远,需要额外的机制来解释太古代 MIF-S。

更新日期:2022-08-21
down
wechat
bug