当前位置: X-MOL 学术J. Mater. Sci. Technol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Caterpillar-like 3D graphene nanoscrolls@CNTs hybrids decorated with Co-doped MoSe2 nanosheets for electrocatalytic hydrogen evolution
Journal of Materials Science & Technology ( IF 10.9 ) Pub Date : 2022-08-10 , DOI: 10.1016/j.jmst.2022.07.013
Hao Luo , Hongfei Gao , Xudong Zhang , Fan Yang , Chen Liu , Kewei Xu , Dagang Guo

Hydrogen is a clean and flexible energy carrier that has the promising to satisfy urgent demands of the energy crisis and environmental protection. Electrochemical hydrogen evolution reaction (HER), a critical half-reaction in water splitting, is one of the greenest and most common methods to obtain high-purity hydrogen. Designing preeminent activity and stability electrocatalysts for hydrogen precipitation reaction (HER) to reduce energy consumption is of great essential. 3D carbon-based materials have attracted widespread concern as the potential scaffolds of highly active and durable electrocatalysts for HER. To boost the HER activity and prolong the lifespan of electrocatalysts, multifarious 3D carbon architectures make an appearance to be engineered for accelerating electronic/mass transfer and maximizing the exposure of active sites. Herein, we designed and fabricated high-performance electrocatalysts based on a special caterpillar-like 3D graphene nanoscrolls@CNTs (GNS@CNTs) scaffold decorated with Co-doped MoSe2 nanosheets for HER. In the caterpillar-like hierarchical structure, CNTs were seamlessly co-bonded and dilated the interlayer and outer spacing of GNS through CVD growth technology, and nickel nanoparticles were covered by the CNTs tips. Taking advantage of the plentiful hierarchical pore, larger specific surface area, and higher chemical stability of the caterpillar-like structure, the catalysts exhibited enhanced electrocatalytic properties than some existing data reported. Density functional theory calculations showed that the encapsulated nickel nanoparticle could tune the electronic structure of the outer anchored Co-doped MoSe2 and optimize its ∆G of H* adsorption by electron traversing effect and doping effect. These indicate that caterpillar-like GNS@CNT is an ideal scaffold for anchoring actives substance and is suitable for high-efficient HER. This study provides new insights for designing hierarchical carbon composite nanostructures for catalysts, sensors, energy materials, and other applications.



中文翻译:

Caterpillar 状 3D 石墨烯纳米卷@CNTs 杂化物装饰有 Co 掺杂的 MoSe2 纳米片用于电催化析氢

氢气是一种清洁、灵活的能源载体,有望满足能源危机和环境保护的迫切需求。电化学析氢反应 (HER) 是水分解中的关键半反应,是获得高纯度氢气的最环保和最常用的方法之一。设计用于氢沉淀反应 (HER) 的卓越活性和稳定性电催化剂以降低能耗至关重要。3D碳基材料作为用于HER的高活性和耐用电催化剂的潜在支架引起了广泛关注。为了提高 HER 活性并延长电催化剂的寿命,多种 3D 碳结构的出现被设计用于加速电子/质量传递和最大化活性位点的暴露。在此处,2个用于HER的纳米片。在类似毛毛虫的层次结构中,CNTs通过CVD生长技术无缝共键合并扩张了GNS的层间和外层间距,镍纳米颗粒被CNTs尖端覆盖。利用类毛虫结构丰富的分级孔、更大的比表面积和更高的化学稳定性,该催化剂表现出比一些现有数据报道的更高的电催化性能。密度泛函理论计算表明,封装的镍纳米粒子可以调节外部锚定的 Co 掺杂 MoSe 2的电子结构并优化其 Δ G电子穿越效应和掺杂效应对 H* 的吸附作用。这些表明毛虫状 GNS@CNT 是一种理想的锚定活性物质的支架,适用于高效 HER。这项研究为设计用于催化剂、传感器、能源材料和其他应用的分层碳复合纳米结构提供了新的见解。

更新日期:2022-08-10
down
wechat
bug