当前位置: X-MOL 学术J. Alloys Compd. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Innovative electrolytic cell of sulfur-doped MnO2 nanorods: Synergistic hydrogen production and formaldehyde degradation at an ultra-low electric energy consumption
Journal of Alloys and Compounds ( IF 6.2 ) Pub Date : 2022-08-12 , DOI: 10.1016/j.jallcom.2022.166748
Wansheng Ruan , Shaoqian Shi , Qiuheng Wang , Xinyu Zhang , Weiyi Hao , Chen Yuan , Ben Ma , Gangya Cheng , Fei Teng

Electrocatalytic hydrogen production by water splitting is highly energy-intensive due to poor electrocatalysts and sluggish four-electron oxygen evolution reaction (OER) kinetics. Herein, MnO2 and sulfur-doped MnO2 (S-MnO2) are prepared by a simple hydrothermal method. The results show that S-MnO2 exhibits a higher OER activity than MnO2 because the sulfur doping gives rise to more Mn3+ active sites, oxygen vacancies (VO) and electrochemically active surface areas. Density functional theory (DFT) calculation further confirms that the abundant VO leads to a higher surface energy of S-MnO2, which is conducive to the adsorptions of H2O and OH- on Mn3+ sites. Moreover, formaldehyde oxidation reaction (FOR) is employed to substitute for sluggish OER to improve hydrogen evolution reaction (HER). Compared to OER-based electrolyzer (3.354 V), the cell voltage of FOR-based electrolyzer (2.778 V) at 100 mA cm−2 has decreased by 17.17 %, and the Faradic efficiency of hydrogen production increases from 89.6 % to 98.6 %. The results indicates that to produce the same amount of hydrogen, 17.17 % of electric energy can be economized. Thus the cost of hydrogen production decreases greatly. The HER efficiency is greatly improved because FOR has faster kinetics than OER. Meanwhile, after running for 2 h at 1.75 V, 52 % of formaldehyde has been degraded. The results demonstrate that the innovative electrolyzer can not only greatly improve the HER efficiency, but also efficiently degrade formaldehyde pollutants.



中文翻译:

创新的硫掺杂二氧化锰纳米棒电解池:在超低电能消耗下协同制氢和降解甲醛

由于较差的电催化剂和缓慢的四电子析氧反应 (OER) 动力学,通过水分解的电催化制氢是高能量密集型的。在此,通过简单的水热法制备MnO 2和硫掺杂的MnO 2 (S-MnO 2 )。结果表明,S-MnO 2表现出比MnO 2更高的OER活性,因为硫掺杂产生了更多的Mn 3+活性位点、氧空位(V O )和电化学活性表面积。密度泛函理论(DFT)计算进一步证实了丰富的VO导致S-MnO 2具有更高的表面能, 有利于 H 2 O 和 OH -在 Mn 3+位点上的吸附。此外,甲醛氧化反应(FOR)被用来替代缓慢的OER,以改善析氢反应(HER)。与基于 OER 的电解槽 (3.354 V) 相比,基于 FOR 的电解槽的电池电压 (2.778 V) 在 100 mA cm -2下降了 17.17%,制氢的法拉第效率从 89.6% 提高到 98.6%。结果表明,生产同样数量的氢气,可节约17.17%的电能。因此制氢成本大大降低。HER 效率大大提高,因为 FOR 的动力学比 OER 更快。同时,在 1.75 V 下运行 2 小时后,52% 的甲醛已被降解。结果表明,创新的电解槽不仅可以大大提高HER效率,还可以有效降解甲醛污染物。

更新日期:2022-08-17
down
wechat
bug