当前位置: X-MOL 学术Adv. Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Revival of Ferroelectric Memories Based on Emerging Fluorite-Structured Ferroelectrics
Advanced Materials ( IF 29.4 ) Pub Date : 2022-08-11 , DOI: 10.1002/adma.202204904
Ju Yong Park 1 , Duk-Hyun Choe 2 , Dong Hyun Lee 3 , Geun Taek Yu 4 , Kun Yang 3 , Se Hyun Kim 3 , Geun Hyeong Park 3 , Seung-Geol Nam 2 , Hyun Jae Lee 2 , Sanghyun Jo 2 , Bong Jin Kuh 5 , Daewon Ha 5 , Yongsung Kim 2 , Jinseong Heo 2 , Min Hyuk Park 1, 3
Affiliation  

Over the last few decades, the research on ferroelectric memories has been limited due to their dimensional scalability and incompatibility with complementary metal-oxide-semiconductor (CMOS) technology. The discovery of ferroelectricity in fluorite-structured oxides revived interest in the research on ferroelectric memories, by inducing nanoscale nonvolatility in state-of-the-art gate insulators by minute doping and thermal treatment. The potential of this approach has been demonstrated by the fabrication of sub-30 nm electronic devices. Nonetheless, to realize practical applications, various technical limitations, such as insufficient reliability including endurance, retention, and imprint, as well as large device-to-device-variation, require urgent solutions. Furthermore, such limitations should be considered based on targeting devices as well as applications. Various types of ferroelectric memories including ferroelectric random-access-memory, ferroelectric field-effect-transistor, and ferroelectric tunnel junction should be considered for classical nonvolatile memories as well as emerging neuromorphic computing and processing-in-memory. Therefore, from the viewpoint of materials science, this review covers the recent research focusing on ferroelectric memories from the history of conventional approaches to future prospects.

中文翻译:

基于新兴萤石结构铁电体的铁电存储器的复兴

在过去的几十年里,由于铁电存储器的尺寸可扩展性以及与互补金属氧化物半导体(CMOS)技术的不兼容性,对铁电存储器的研究一直受到限制。萤石结构氧化物中铁电性的发现重新激发了人们对铁电存储器研究的兴趣,通过微量掺杂和热处理在最先进的栅极绝缘体中诱导纳米级非易失性。亚 30 纳米电子器件的制造已经证明了这种方法的潜力。然而,为了实现实际应用,各种技术限制,例如耐久性、保持力和压印等可靠性不足,以及设备间的较大差异,都需要紧急解决方案。此外,应根据目标设备和应用程序考虑此类限制。对于经典的非易失性存储器以及新兴的神经形态计算和存储器处理,应考虑各种类型的铁电存储器,包括铁电随机存取存储器、铁电场效应晶体管和铁电隧道结。因此,本文从材料科学的角度,从传统方法的历史到未来的展望,涵盖了最近以铁电存储器为重点的研究。
更新日期:2022-08-11
down
wechat
bug