当前位置: X-MOL 学术Adv. Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Dual-Scale Integration Design of Sn–ZnO Catalyst toward Efficient and Stable CO2 Electroreduction
Advanced Materials ( IF 29.4 ) Pub Date : 2022-08-10 , DOI: 10.1002/adma.202204637
Bohua Ren 1, 2 , Zhen Zhang 2 , Guobin Wen 2 , Xiaowen Zhang 3 , Mi Xu 2 , Yueying Weng 1 , Yihang Nie 3 , Haozhen Dou 2 , Yi Jiang 2 , Ya-Ping Deng 2 , Guiru Sun 4 , Dan Luo 1, 2 , Lingling Shui 1 , Xin Wang 1, 3 , Ming Feng 4 , Aiping Yu 2 , Zhongwei Chen 2
Affiliation  

Electrochemical CO2 reduction to CO is a potential sustainable strategy for alleviating CO2 emission and producing valuable fuels. In the quest to resolve its current problems of low-energy efficiency and insufficient durability, a dual-scale design strategy is proposed by implanting a non-noble active Sn–ZnO heterointerface inside the nanopores of high-surface-area carbon nanospheres (Sn–ZnO@HC). The metal d-bandwidth tuning of Sn and ZnO alters the extent of substrate–molecule orbital mixing, facilitating the breaking of the *COOH intermediate and the yield of CO. Furthermore, the confinement effect of tailored nanopores results in a beneficial pH distribution in the local environment around the Sn–ZnO nanoparticles and protects them against leaching and aggregating. Through integrating electronic and nanopore-scale control, Sn–ZnO@HC achieves a quite low potential of −0.53 V vs reversible hydrogen electrode (RHE) with 91% Faradaic efficiency for CO and an ultralong stability of 240 h. This work provides proof of concept for the multiscale design of electrocatalysts.

中文翻译:

Sn-ZnO催化剂的双尺度集成设计实现高效稳定的CO2电还原

电化学 CO 2还原为 CO 是一种潜在的可持续减排策略排放和生产有价值的燃料。为了解决其当前能量效率低和耐久性不足的问题,提出了一种双尺度设计策略,即在高表面积碳纳米球(Sn- ZnO@HC)。Sn 和 ZnO 的金属 d 带宽调整改变了底物 - 分子轨道混合的程度,促进了 *COOH 中间体的破坏和 CO 的产率。此外,定制纳米孔的限制效应导致了有益的 pH 分布在Sn-ZnO 纳米粒子周围的局部环境,并保护它们免受浸出和聚集。通过集成电子和纳米孔级控制,Sn-ZnO@HC 实现了相当低的 -0 电位。53 V vs 可逆氢电极 (RHE),CO 的法拉第效率为 91%,超长稳定性为 240 小时。这项工作为电催化剂的多尺度设计提供了概念证明。
更新日期:2022-08-10
down
wechat
bug