当前位置: X-MOL 学术Plant Physiol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Flow similarity, stochastic branching, and quarter-power scaling in plants.
Plant Physiology ( IF 7.4 ) Pub Date : 2022-10-27 , DOI: 10.1093/plphys/kiac358
Charles A Price 1, 2 , Paul Drake 2, 3, 4 , Erik J Veneklaas 2, 3, 4 , Michael Renton 2, 3, 4
Affiliation  

The origin of allometric scaling patterns that are multiples of one-fourth has long fascinated biologists. While not universal, quarter-power scaling relationships are common and have been described in all major clades. Several models have been advanced to explain the origin of such patterns, but questions regarding the discordance between model predictions and empirical data have limited their widespread acceptance. Notable among these is a fractal branching model that predicts power-law scaling of both metabolism and physical dimensions. While a power law is a useful first approximation to some data sets, nonlinear data compilations suggest the possibility of alternative mechanisms. Here, we show that quarter-power scaling can be derived using only the preservation of volume flow rate and velocity as model constraints. Applying our model to land plants, we show that incorporating biomechanical principles and allowing different parts of plant branching networks to be optimized to serve different functions predicts nonlinearity in allometric relationships and helps explain why interspecific scaling exponents covary along a fractal continuum. We also demonstrate that while branching may be a stochastic process, due to the conservation of volume, data may still be consistent with the expectations for a fractal network when one examines sub-trees within a tree. Data from numerous sources at the level of plant shoots, stems, and petioles show strong agreement with our model predictions. This theoretical framework provides an easily testable alternative to current general models of plant metabolic allometry.

中文翻译:

植物中的流动相似性、随机分支和四分之一功率缩放。

四分之一倍数的异速生长比例模式的起源长期以来一直让生物学家着迷。虽然不是普遍的,但四分之一功率缩放关系很常见,并且在所有主要进化枝中都有描述。已经提出了几种模型来解释这种模式的起源,但是关于模型预测和经验数据之间不一致的问题限制了它们的广泛接受。其中值得注意的是一个分形分支模型,它可以预测新陈代谢和物理维度的幂律缩放。虽然幂律是对某些数据集有用的初步近似,但非线性数据汇编表明了替代机制的可能性。在这里,我们表明,仅使用保留体积流量和速度作为模型约束,就可以得出四分之一功率缩放。将我们的模型应用于陆地植物,我们表明,结合生物力学原理并允许优化植物分支网络的不同部分以服务于不同的功能,可以预测异速生长关系中的非线性,并有助于解释为什么种间缩放指数沿分形连续体共变。我们还证明,虽然分支可能是一个随机过程,但由于体积守恒,当人们检查树中的子树时,数据可能仍与分形网络的预期一致。来自植物芽、茎和叶柄水平的众多来源的数据与我们的模型预测非常一致。该理论框架为当前植物代谢异速生长的一般模型提供了一种易于测试的替代方案。我们表明,结合生物力学原理并允许优化植物分支网络的不同部分以服务于不同的功能,可以预测异速生长关系中的非线性,并有助于解释为什么种间缩放指数沿分形连续体共变。我们还证明,虽然分支可能是一个随机过程,但由于体积守恒,当人们检查树中的子树时,数据可能仍与分形网络的预期一致。来自植物芽、茎和叶柄水平的众多来源的数据与我们的模型预测非常一致。该理论框架为当前植物代谢异速生长的一般模型提供了一种易于测试的替代方案。我们表明,结合生物力学原理并允许优化植物分支网络的不同部分以服务于不同的功能,可以预测异速生长关系中的非线性,并有助于解释为什么种间缩放指数沿分形连续体共变。我们还证明,虽然分支可能是一个随机过程,但由于体积守恒,当人们检查树中的子树时,数据可能仍与分形网络的预期一致。来自植物芽、茎和叶柄水平的众多来源的数据与我们的模型预测非常一致。该理论框架为当前植物代谢异速生长的一般模型提供了一种易于测试的替代方案。
更新日期:2022-08-03
down
wechat
bug