当前位置: X-MOL 学术Appl. Catal. B Environ. Energy › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Disentangling metallic cobalt sites and oxygen vacancy effects in synergistic plasma-catalytic CO2/CH4 conversion into oxygenates
Applied Catalysis B: Environment and Energy ( IF 22.1 ) Pub Date : 2022-08-10 , DOI: 10.1016/j.apcatb.2022.121830
Liguang Dou, Yadi Liu, Yuan Gao, Jiangwei Li, Xiucui Hu, Shuai Zhang, Kostya (Ken) Ostrikov, Tao Shao

Plasma-catalysis is a highly promising renewable-energy-based solution for decarbonization of industrial and environmental catalysis. However, urgent insights how to develop plasma-specific catalysts and synergize with the unique plasma effects are vitally needed for CO2/CH4 utilization. Herein we provide guiding principles for catalysts design enabling discriminative production of liquid oxygenates. Comprehensive tests revealed that metallic Co was critical to enhance the CH3COOH generation, while oxygen vacancies (Ov) contributed to the formation of CH3OH. The gaseous and interfacial simulations verified the strong chemisorption of CO2 and key O-containing radicals (O, OH, COOH) on Ov, thereby shifting the reaction from high-barrier surface to the gas phase via the barrierless Eley-Rideal mechanism. The specifically Ov-assisted pathways for R-COOH/R-OH generation over the custom-designed Co-MgAlO-Ov multiphase structures are proposed. This study confirms that the microstructure design can modulate the radical adsorption and kinetic factors of the plasma-induced interfacial catalysis leading towards the plasma-electrified energy conversion.



中文翻译:

在协同等离子体催化 CO2/CH4 转化为含氧化合物中解开金属钴位点和氧空位效应

等离子催化是一种非常有前景的基于可再生能源的解决方案,用于工业和环境催化的脱碳。然而,对于CO 2 /CH 4的利用,迫切需要了解如何开发等离子体特异性催化剂并与独特的等离子体效应协同作用。在这里,我们为催化剂设计提供了指导原则,从而能够区分生产液态氧化物。综合测试表明,金属钴对于增强 CH 3 COOH 的生成至关重要,而氧空位 (O v ) 有助于 CH 3 OH 的形成。气体和界面模拟验证了 CO 2的强化学吸附和O v上的关键含O自由基(O,OH,COOH) ,从而通过无势垒Eley-Rideal机制将反应从高势垒表面转移到气相。提出了在定制设计的 Co-MgAlO-O v多相结构上生成 R-COOH/R-OH的特殊 O v辅助途径。该研究证实,微结构设计可以调节等离子体诱导的界面催化的自由基吸附和动力学因素,从而实现等离子体带电能量转换。

更新日期:2022-08-14
down
wechat
bug