当前位置: X-MOL 学术J. CO2 Util. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Mineralization mechanism of carbon dioxide with illite interlayer cations using molecular dynamics simulation and experiments
Journal of CO2 Utilization ( IF 7.7 ) Pub Date : 2022-08-08 , DOI: 10.1016/j.jcou.2022.102161
Xuguang Dai, Chongtao Wei, Meng Wang, Yu Song, Ruifeng Chen, Xiaoqi Wang, Xuan Shi, Veerle Vandeginste

Clay minerals can be identified as a prospective target for long-term CO2 sequestration due to their accessible interlayer cations and periodic sheet structure. Understanding the reactive motion of mineral and fluids has dual advantages of resources and environment. To clarify the storage mechanism, an alternative strategy for CO2 mineralization was investigated through molecular dynamics (MD) simulation and scCO2single bondH2Osingle bondillite experiments. The MD simulation predicts the protonation of non-bridging oxygen (NBO) at the illite surface in the first picoseconds, resulting in HCO3- ion formations via the bonding between CO2 molecules and hydroxyl group dissociated from H2O molecules. Surface protonation leads to interlayer K+ cations hopping to the illite/fluids interface since the middle stage, mainly after 1 ns of the reaction. The leached K+ cations bond with the HCO3- ions and later interact with the hydroxyl groups, forming K2CO3 molecules at the interface. In accordance with the experimental results, the K+ cations’ concentration in the filtrates progressively increases throughout the reaction. Results of SEM-EDS, Raman and XPS measurements find that free CO2 clusters in contact with the leached interlayer cations can be converted into carbonate species through the mineralization reaction, precipitating at the surface and thus inducing interlayer swelling. These observations reveal that the clay-related mineralization is estimated to undergo an accumulated process, accessibly enhancing the amount of captured CO2. This is a new report that demonstrates the mechanism of CO2 mineralization in clay minerals, presenting a potential solution for CO2 sequestration enhancement. Insights into K+ cations leaching and mineralization kinetics and their underlying mechanisms during the scCO2single bondH2Osingle bondillite reaction is a matter of generalization in clay minerals for CO2 storage.



中文翻译:

二氧化碳与伊利石夹层阳离子的分子动力学模拟与实验成矿机理

由于粘土矿物具有可接近的层间阳离子和周期性片状结构,因此可以将其确定为长期 CO 2封存的潜在目标。了解矿物和流体的反应运动具有资源和环境的双重优势。为了阐明储存机制,通过分子动力学 (MD) 模拟和 scCO 2 H 2 O伊利石实验研究了 CO 2矿化的替代策略。MD 模拟预测在第一皮秒内伊利石表面的非桥氧 (NBO) 质子化,导致通过 CO 2之间的键合形成HCO 3 -离子单键单键分子和羟基从 H 2 O 分子中解离出来。表面质子化导致层间 K +阳离子从中间阶段开始跳跃到伊利石/流体界面,主要是在反应的 1 ns 之后。浸出的K +阳离子与HCO 3 -离子键合,随后与羟基相互作用,在界面处形成K 2 CO 3分子。根据实验结果,滤液中的K +阳离子浓度在整个反应过程中逐渐增加。SEM-EDS、拉曼和 XPS 测量结果发现游离 CO 2与浸出的层间阳离子接触的簇可以通过矿化反应转化为碳酸盐物质,在表面沉淀,从而引起层间膨胀。这些观察结果表明,估计与粘土相关的矿化经历了一个累积过程,从而增加了捕获的 CO 2的量。这是一份展示粘土矿物中 CO 2矿化机制的新报告,为增强 CO 2封存提供了潜在的解决方案。在 scCO 2 H 2 O过程中 K +阳离子浸出和矿化动力学及其潜在机制的见解单键单键伊利石反应是用于 CO 2储存的粘土矿物的一般化问题。

更新日期:2022-08-09
down
wechat
bug