当前位置: X-MOL 学术Prog. Org. Coat. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Stress and embrittlement in organic coatings during general weathering exposure: A review
Progress in Organic Coatings ( IF 6.6 ) Pub Date : 2022-08-08 , DOI: 10.1016/j.porgcoat.2022.107085
S.G. Croll

Failure is defined by a coating's purpose, but a crack is a failure in almost every application. Cracks cause problems in service when they first arise, well before they are widespread. By itself, degradation of a polymer coating can cause cracks or adhesive failure, but several other sources of stress are possible. How do these stresses arise and how do coating properties change during service resulting in cracks? Moisture can produce swelling or blistering, entailing compressive stresses, but often tensile stresses also result at the same time. Environmental stress cracking causes embrittlement in polymers due to a combination of plasticisation and swelling caused by moisture. Seemingly small stresses, from thermal mismatch or bending, can initiate failure by repetition or due to a stress concentration. Polymers become brittle, manifested in several ways. Modulus and tensile strength may increase, but elongation and fracture surface energy diminish considerably. The Lake-Thomas theory allows estimates of how breaking bonds contributes to fracture surface energy but currently there is no settled model for calculating how mechanical dissipation contributes or changes. Degradation causes small defects to become more likely to initiate failure than in unweathered coatings and Poisson's ratio provides insight how 3-dimensional structure relates to potential cavitation. Not only do all these factors affect the overall coating film, but they also affect the internal integrity between the binder and other ingredients and thus failure can be initiated internally before it become apparent externally.



中文翻译:

一般风化暴露过程中有机涂层的应力和脆化:综述

失效是由涂层的用途定义的,但几乎所有应用中的裂纹都是失效的。裂缝在它们第一次出现时会导致服务问题,远在它们普遍存在之前。就其本身而言,聚合物涂层的降解会导致裂缝或粘合剂失效,但其他几种应力源也是可能的。这些应力是如何产生的,涂层性能在使用过程中如何变化导致裂纹?水分会产生膨胀或起泡,从而产生压缩应力,但通常同时也会产生拉伸应力。由于湿气引起的塑化和溶胀的结合,环境应力开裂会导致聚合物脆化。来自热失配或弯曲的看似很小的应力可能会因重复或由于应力集中而引发故障。聚合物变脆,体现在几个方面。模量和拉伸强度可能会增加,但伸长率和断裂表面能会显着降低。Lake-Thomas 理论允许估计断裂键对断裂表面能的贡献,但目前还没有确定的模型来计算机械耗散如何贡献或变化。与未风化涂层相比,退化导致小缺陷更容易引发故障,泊松比提供了 3 维结构如何与潜在气穴相关的见解。所有这些因素不仅会影响整个涂膜,而且还会影响粘合剂和其他成分之间的内部完整性,因此在外部变得明显之前,可能会在内部引发失效。但伸长率和断裂表面能显着降低。Lake-Thomas 理论允许估计断裂键对断裂表面能的贡献,但目前还没有确定的模型来计算机械耗散如何贡献或变化。与未风化涂层相比,退化导致小缺陷更容易引发故障,泊松比提供了 3 维结构如何与潜在气穴相关的见解。所有这些因素不仅会影响整个涂膜,而且还会影响粘合剂和其他成分之间的内部完整性,因此在外部变得明显之前,可能会在内部引发失效。但伸长率和断裂表面能显着降低。Lake-Thomas 理论允许估计断裂键对断裂表面能的贡献,但目前还没有确定的模型来计算机械耗散如何贡献或变化。与未风化涂层相比,退化导致小缺陷更容易引发故障,泊松比提供了 3 维结构如何与潜在气穴相关的见解。所有这些因素不仅会影响整个涂膜,而且还会影响粘合剂和其他成分之间的内部完整性,因此在外部变得明显之前,可能会在内部引发失效。Lake-Thomas 理论允许估计断裂键对断裂表面能的贡献,但目前还没有确定的模型来计算机械耗散如何贡献或变化。与未风化涂层相比,退化导致小缺陷更容易引发故障,泊松比提供了 3 维结构如何与潜在气穴相关的见解。所有这些因素不仅会影响整个涂膜,而且还会影响粘合剂和其他成分之间的内部完整性,因此在外部变得明显之前,可能会在内部引发失效。Lake-Thomas 理论允许估计断裂键对断裂表面能的贡献,但目前还没有确定的模型来计算机械耗散如何贡献或变化。与未风化涂层相比,退化导致小缺陷更容易引发故障,泊松比提供了 3 维结构如何与潜在气穴相关的见解。所有这些因素不仅会影响整个涂膜,而且还会影响粘合剂和其他成分之间的内部完整性,因此在外部变得明显之前,可能会在内部引发失效。与未风化涂层相比,退化导致小缺陷更容易引发故障,泊松比提供了 3 维结构如何与潜在气穴相关的见解。所有这些因素不仅会影响整个涂膜,而且还会影响粘合剂和其他成分之间的内部完整性,因此在外部变得明显之前,可能会在内部引发失效。与未风化涂层相比,退化导致小缺陷更容易引发故障,泊松比提供了 3 维结构如何与潜在气穴相关的见解。所有这些因素不仅会影响整个涂膜,而且还会影响粘合剂和其他成分之间的内部完整性,因此在外部变得明显之前,可能会在内部引发失效。

更新日期:2022-08-08
down
wechat
bug