当前位置: X-MOL 学术Biogeochemistry › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A “toy model” analysis of causes of nitrogen limitation in terrestrial ecosystems
Biogeochemistry ( IF 4 ) Pub Date : 2022-08-06 , DOI: 10.1007/s10533-022-00959-z
Peter M. Vitousek , Kathleen K. Treseder , Robert W. Howarth , Duncan N. L. Menge

Nitrogen (N) limitation to net primary production is widespread and influences the responsiveness of ecosystems to many components of global environmental change. Logic and both simple simulation (Vitousek and Fieldin in Biogeochemistry 46: 179–202, 1999) and analytical models (Menge in Ecosystems 14:519–532, 2011) demonstrate that the co-occurrence of losses of N in forms that organisms within an ecosystem cannot control and barriers to biological N fixation (BNF) that keep this process from responding to N deficiency are necessary for the development and persistence of N limitation. Models have focused on the continuous process of leaching losses of dissolved organic N in biologically unavailable forms, but here we use a simple simulation model to show that discontinuous losses of ammonium and nitrate, normally forms of N whose losses organisms can control, can be uncontrollable by organisms and can contribute to N limitation under realistic conditions. These discontinuous losses can be caused by temporal variation in precipitation or by ecosystem-level disturbance like harvest, fire, and windthrow. Temporal variation in precipitation is likely to increase and to become increasingly important in causing N losses as anthropogenic climate change proceeds. We also demonstrate that under the conditions simulated here, differentially intense grazing on N- and P-rich symbiotic N fixers is the most important barrier to the responsiveness of BNF to N deficiency.



中文翻译:

陆地生态系统氮限制原因的“玩具模型”分析

氮 (N) 对净初级生产的限制很普遍,并影响生态系统对全球环境变化的许多组成部分的响应。逻辑和简单的模拟(Vitousek and Fieldin in Biogeochemistry 46: 179–202, 1999)和分析模型(Menge in Ecosystems 14:519–532, 2011)都表明,N 在生物体中的形式中同时发生生态系统无法控制,生物固氮 (BNF) 的障碍阻止这一过程对 N 缺乏作出反应,对于 N 限制的发展和持续存在是必要的。模型侧重于溶解有机氮以生物不可用形式浸出损失的连续过程,但在这里我们使用一个简单的模拟模型来表明铵和硝酸盐的不连续损失,N 的正常形式,其损失有机体可以控制,有机体无法控制,并且在现实条件下会导致 N 限制。这些不连续的损失可能是由降水的时间变化或生态系统层面的干扰(如收获、火灾和风吹)造成的。随着人为气候变化的进行,降水的时间变化可能会增加,并且在造成氮损失方面变得越来越重要。我们还证明,在此处模拟的条件下,对富含 N 和 P 的共生 N 固定器的不同强度放牧是 BNF 对 N 缺乏反应的最重要障碍。这些不连续的损失可能是由降水的时间变化或生态系统层面的干扰(如收获、火灾和风吹)造成的。随着人为气候变化的进行,降水的时间变化可能会增加,并且在造成氮损失方面变得越来越重要。我们还证明,在此处模拟的条件下,对富含 N 和 P 的共生 N 固定器的不同强度放牧是 BNF 对 N 缺乏反应的最重要障碍。这些不连续的损失可能是由降水的时间变化或生态系统层面的干扰(如收获、火灾和风吹)造成的。随着人为气候变化的进行,降水的时间变化可能会增加,并且在造成氮损失方面变得越来越重要。我们还证明,在此处模拟的条件下,对富含 N 和 P 的共生 N 固定器的不同强度放牧是 BNF 对 N 缺乏反应的最重要障碍。

更新日期:2022-08-07
down
wechat
bug