当前位置: X-MOL 学术J. Magnes. Alloys › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
3D-printed Mg-1Ca/polycaprolactone composite scaffolds with promoted bone regeneration
Journal of Magnesium and Alloys ( IF 17.6 ) Pub Date : 2022-08-06 , DOI: 10.1016/j.jma.2022.07.002
Xiao Zhao , Siyi Wang , Feilong Wang , Yuan Zhu , Ranli Gu , Fan Yang , Yongxiang Xu , Dandan Xia , Yunsong Liu

In bone tissue engineering, polycaprolactone (PCL) is a promising material with good biocompatibility, but its poor degradation rate, mechanical strength, and osteogenic properties limit its application. In this study, we developed an Mg-1Ca/polycaprolactone (Mg-1Ca/PCL) composite scaffolds to overcome these limitations. We used a melt blending method to prepare Mg-1Ca/PCL composites with Mg-1Ca alloy powder mass ratios of 5, 10, and 20 wt%. Porous scaffolds with controlled macro- and microstructure were printed using the fused deposition modeling method. We explored the mechanical strength, biocompatibility, osteogenesis performance, and molecular mechanism of the Mg-1Ca/PCL composites. The 5 and 10 wt% Mg-1Ca/PCL composites were found to have good biocompatibility. Moreover, they promoted the mechanical strength, proliferation, adhesion, and osteogenic differentiation of human bone marrow stem cells (hBMSCs) of pure PCL. degradation experiments revealed that the composite material stably released Mg ions for a long period; it formed an apatite layer on the surface of the scaffold that facilitated cell adhesion and growth. Microcomputed tomography and histological analysis showed that both 5 and 10 wt% Mg-1Ca/PCL composite scaffolds promoted bone regeneration bone defects. Our results indicated that the Wnt/β-catenin pathway was involved in the osteogenic effect. Therefore, Mg-1Ca/PCL composite scaffolds are expected to be a promising bone regeneration material for clinical application. Bone tissue engineering scaffolds have promising applications in the regeneration of critical-sized bone defects. However, there remain many limitations in the materials and manufacturing methods used to fabricate scaffolds. This study shows that the developed Ma-1Ca/PCL composites provides scaffolds with suitable degradation rates and enhanced boneformation capabilities. Furthermore, the fused deposition modeling method allows precise control of the macroscopic morphology and microscopic porosity of the scaffold. The obtained porous scaffolds can significantly promote the regeneration of bone defects.

中文翻译:

3D打印的Mg-1Ca/聚己内酯复合支架可促进骨再生

在骨组织工程中,聚己内酯(PCL)是一种具有良好生物相容性的有前途的材料,但其较差的降解率、机械强度和成骨性能限制了其应用。在这项研究中,我们开发了一种 Mg-1Ca/聚己内酯 (Mg-1Ca/PCL) 复合支架来克服这些限制。采用熔融共混法制备了 Mg-1Ca 合金粉末质量比为 5、10 和 20 wt% 的 Mg-1Ca/PCL 复合材料。使用熔融沉积建模方法打印具有受控宏观和微观结构的多孔支架。我们探索了 Mg-1Ca/PCL 复合材料的机械强度、生物相容性、成骨性能和分子机制。 5 wt% 和 10 wt% Mg-1Ca/PCL 复合材料被发现具有良好的生物相容性。此外,它们还促进纯 PCL 的人骨髓干细胞 (hBMSC) 的机械强度、增殖、粘附和成骨分化。降解实验表明,该复合材料能长期稳定释放Mg离子;它在支架表面形成磷灰石层,促进细胞粘附和生长。显微计算机断层扫描和组织学分析表明,5 wt% 和 10 wt% Mg-1Ca/PCL 复合支架均可促进骨缺损的骨再生。我们的结果表明 Wnt/β-catenin 通路参与成骨作用。因此,Mg-1Ca/PCL复合支架有望成为一种有前景的临床应用骨再生材料。骨组织工程支架在临界尺寸骨缺损的再生方面具有广阔的应用前景。然而,用于制造支架的材料和制造方法仍然存在许多限制。这项研究表明,开发的 Ma-1Ca/PCL 复合材料为支架提供了合适的降解率和增强的骨形成能力。此外,熔融沉积建模方法可以精确控制支架的宏观形态和微观孔隙率。所得多孔支架可显着促进骨缺损的再生。
更新日期:2022-08-06
down
wechat
bug