当前位置: X-MOL 学术Org. Electron. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Photoinduced spin-orbital coupling effect at donor: acceptor interface in non-fullerene organic solar cells
Organic Electronics ( IF 3.2 ) Pub Date : 2022-08-05 , DOI: 10.1016/j.orgel.2022.106613
Jiashun Duan, Kai Feng, Ling Xu

Non-fullerene based organic solar cells show excellent optoelectronic properties. In this study, firstly, we measured the magneto-photocurrent (MPC) effect to monitor the spin orbit coupling (SOC) action of electron-hole pairs at the donor: acceptor (D:A) interfaces, introduced by the dipole-dipole interaction in non-fullerene ITIC molecules. The MPC of non-fullerene based bulk heterojunctions show a broader line-shape, which implies a stronger SOC in electron-hole pairs at D:A interface as compared to the fullerene based bulk heterojunctions under photo-excitation. Secondly, the light-induced electron paramagnetic resonance (LEPR) results further give a direct evidence for stronger SOC in electron-hole pairs at D:A interface in non-fullerene bulk-heterojunction. Theoretically, increasing SOC provides a pathway for singlet electron-hole pairs to convert into triplet electron-hole pairs, leading to more spin states ready for dissociation. Therefore, the increased SOC will increase the magneto-photocurrent, and improve the performance of non-fullerene solar cells, we consider that photoexcitation can present a new approach to strengthen the SOC effect in organic solar cells toward better photovoltaic actions.



中文翻译:

供体处的光致自旋轨道耦合效应:非富勒烯有机太阳能电池中的受体界面

基于非富勒烯的有机太阳能电池显示出优异的光电性能。在这项研究中,首先,我们测量了磁光电流 (MPC) 效应,以监测由偶极-偶极相互作用引入的供体:受体 (D:A) 界面处电子-空穴对的自旋轨道耦合 (SOC) 作用在非富勒烯 ITIC 分子中。基于非富勒烯的本体异质结的 MPC 显示出更宽的线形,这意味着与光激发下的基于富勒烯的本体异质结相比,D:A 界面处的电子-空穴对中更强的 SOC。其次,光诱导电子顺磁共振(LEPR)结果进一步直接证明了非富勒烯体异质结中 D:A 界面处的电子-空穴对中的 SOC 更强。理论上,增加 SOC 为单线态电子-空穴对转换为三线态电子-空穴对提供了途径,从而导致更多的自旋态准备解离。因此,增加的 SOC 将增加磁光电流,并提高非富勒烯太阳能电池的性能,我们认为光激发可以提供一种新的方法来加强有机太阳能电池中的 SOC 效应,以实现更好的光伏作用。

更新日期:2022-08-10
down
wechat
bug