当前位置: X-MOL 学术Mater. Today Phys. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Energy band engineering of hydroxyethyl group grafted on the edge of 3D g-C3N4 nanotubes for enhanced photocatalytic H2 production
Materials Today Physics ( IF 11.5 ) Pub Date : 2022-08-05 , DOI: 10.1016/j.mtphys.2022.100806
Xinyu Wang , Jinfeng Gong , Yifei Dong , Shanna An , Xiaoli Zhang , Jian Tian

The reduction of H2O into H2 through solar energy has attracted great attention of renewable energy research. However, the rapid recombination of photogenerated electrons and holes limits its application. In this paper, the hydroxyethyl group (-CH2CH2OH) was edge grafted on the g-C3N4 nanotubes (NTs) (named g-C3N4 NTs-CCO) by the one-pot solvothermal for photocatalytic hydrogen evolution, enhancing the light absorption and the transport of carriers, and improving the energy band structure for photocatalytic hydrogen evolution. The g-C3N4 NTs-CCO exhibited greatly improved photocatalytic hydrogen evolution activity (2521 μmol h−1 g−1), about 4.90 times of bulk g-C3N4/Pt and 2.71 times of the g-C3N4 NTs/Pt. Meanwhile, the apparent quantum yield (AQE) value of g-C3N4 NTs-CCO using 50 mg photocatalyst is 6.45% under light at λ = 370 nm. The experimental tests and DFT calculation have shown that g-C3N4 NTs-CCO have the benefits as follows: 1) The unique ordered and well-crystallized array structure could form the potential difference after photoexcitation which promotes charge transfer and mass transfer and increases the active sites for the hydrogen evolution reaction; 2) the edge grafting of hydroxyethyl group improves the energy band structure of the catalyst, provides an intermediate band at the 0 eV Fermi level which acts as the transition sites for photogenerated carriers and the energy level (H+/H2) of reaction, and provides a more thermodynamically favorable active site N3, thus facilitates photogenerated carrier migration and reaction processes; 3) the unique ordered well-crystallized array structure and the improvement of energy band structure enhance the light absorption and the transport of carriers and provide the active sites, thereby promoting the excitation, migration and surface reaction process of carriers for the improved photocatalytic hydrogen evolution performance.



中文翻译:

3D g-C3N4 纳米管边缘接枝的羟乙基能带工程用于增强光催化产氢

通过太阳能将H 2 O还原成H 2引起了可再生能源研究的极大关注。然而,光生电子和空穴的快速复合限制了其应用。本文采用一锅溶剂热法将羟乙基(-CH 2 CH 2 OH)边缘接枝在gC 3 N 4纳米管(NTs)(命名为gC 3 N 4 NTs-CCO)上,用于光催化析氢,增强光的吸收和载流子的传输,改善光催化析氢的能带结构。gC 3 N 4NTs-CCO表现出显着提高的光催化析氢活性(2521 μmol h -1  g -1),约为本体gC 3 N 4 /Pt的4.90倍和gC 3 N 4 NTs/Pt的2.71倍。同时,使用50 mg光催化剂的gC 3 N 4 NTs-CCO在λ = 370 nm的光下的表观量子产率(AQE)值为6.45%。实验测试和DFT计算表明,gC 3 N 4NTs-CCO具有以下优点: 1)独特的有序且结晶良好的阵列结构,光激发后可形成电位差,促进电荷转移和传质,增加析氢反应的活性位点;2) 羟乙基的边缘接枝改善了催化剂的能带结构,在0 eV费米能级提供了一个中间能带,作为光生载流子的过渡位点和反应的能级(H + /H 2 ),并提供更热力学有利的活性位点 N 3,从而促进光生载流子迁移和反应过程;3) 独特的有序良晶阵列结构和能带结构的改进增强了光的吸收和载流子的传输并提供了活性位点,从而促进了载流子的激发、迁移和表面反应过程,从而改善了光催化析氢表现。

更新日期:2022-08-06
down
wechat
bug