当前位置: X-MOL 学术Sens. Actuators B Chem. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
In2O3/g-C3N4/Au ternary heterojunction-integrated surface plasmonic and charge-separated effects for room-temperature ultrasensitive NO2 detection
Sensors and Actuators B: Chemical ( IF 8.4 ) Pub Date : 2022-08-03 , DOI: 10.1016/j.snb.2022.132448
Chaohan Han , Xiaowei Li , Jie Liu , Haipeng Dong , Wanying Cheng , Yu Liu , Jiayu Xin , Xinghua Li , Changlu Shao , Yichun Liu

Light-activated gas sensors based on semiconducting metal oxides (SMOs) hold great promise for next-generation gas sensing application, due to their unique superiority including room-temperature operation, intrinsic safety, and simple device structure. However, poor visible-light absorption and fast carrier recombination of SMOs sensing film are two main barriers that seriously restrict their sensing performance of light-activated gas sensors. Herein, a visible-light activated gas sensor based on Au nanoparticles modified In2O3/g-C3N4 heterojunction nanofibers is developed. Excellent sensing response (Rg/Ra = 17.2 to 1 ppm NO2, where Ra and Rg represent the resistance of sensors when exposed to air or target gas) and fast response/recovery kinetics at room temperature are obtained, which is markedly better than the sensors based on pristine In2O3 nanofibers and In2O3/g-C3N4 nanofibers. Through the discussion and estimation of experimental results, the improved gas sensing properties of In2O3/g-C3N4/Au-based sensors are speculated to be related to the enhanced visible light utilization benefiting from localized surface plasmon resonance (LSPR) effect of Au nanoparticles, and the efficient separation of photo-generated carriers enabled by heterojunctions between In2O3, Au, and g-C3N4 components. The current work will provide a universal strategy to develop high-performance light-activated gas sensor and a deep understanding about the sensing principle of this novel type of gas sensor.



中文翻译:

In2O3/g-C3N4/Au 三元异质结集成表面等离子体和电荷分离效应用于室温超灵敏 NO2 检测

基于半导体金属氧化物 (SMO) 的光激活气体传感器因其独特的优势(包括室温操作、本质安全性和简单的器件结构)而在下一代气体传感应用中具有广阔的前景。然而,SMOs传感膜的可见光吸收差和载流子复合快是严重限制其光敏气体传感器传感性能的两个主要障碍。在此,开发了一种基于金纳米粒子修饰的 In 2 O 3 /gC 3 N 4异质结纳米纤维的可见光激活气体传感器。出色的传感响应(R g /R a = 17.2 至 1 ppm NO 2,​​其中 R a和R g代表传感器暴露于空气或目标气体时的电阻)并获得室温下的快速响应/恢复动力学,这明显优于基于原始In 2 O 3纳米纤维和In 2 O 3 /gC的传感器3 N 4纳米纤维。通过对实验结果的讨论和估计,改进了In 2 O 3 /gC 3 N 4的气敏性能据推测,基于 /Au 的传感器与增强的可见光利用率有关,这得益于 Au 纳米粒子的局域表面等离子共振 (LSPR) 效应,以及通过 In 2 O 3、Au、和gC 3 N 4组分。目前的工作将为开发高性能光激活气体传感器提供通用策略,并深入了解这种新型气体传感器的传感原理。

更新日期:2022-08-03
down
wechat
bug