当前位置: X-MOL 学术Eng. Anal. Bound. Elem. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
An efficient MPS refined technique with adaptive variable-size particles
Engineering Analysis With Boundary Elements ( IF 3.3 ) Pub Date : 2022-08-03 , DOI: 10.1016/j.enganabound.2022.07.013
Kai Zhang , Yi-Jie Sun , Zhong-Guo Sun , Feng Wang , Xiao Chen , Guang Xi

For the single-resolution particle method, large computation demand with high accuracy commonly requires enormous number of particles, which becomes greatly time-consuming. The moving particle semi-implicit (MPS) method with variable-size particles (VSP) has been proposed to refine particles in local domain. However, in VSP-MPS method, the refined area is fixed in the calculation, which makes it difficult to precisely capture flow near moving and deformable boundaries. This study develops a MPS method with adaptive variable-size particles model, called AVSP-MPS. In this method, by capturing moving and deformable boundaries, the objective computational domain can be dynamically refined. A new criterion, that splitting and coalescing only happen when the entire particle crosses the refined interface, is proposed to avoid unnecessary chain reactions of particle splitting and coalescing. The stability of the method is therefore improved. The district resolution is not a specific value, but a range in VSP model. An inappropriate selection of resolution range would cause repetitive splitting and coalescing, leading to low efficiency of the computation. In this research, the new maximum and minimum volumes in the region with different resolutions, as an optimized result, are obtained to improve convergence near the multi-resolution boundaries. Several cases as dam break and water entry are verified. The numerical results show that the AVSP-MPS method has an efficient, flexible and stable refinement technique in treating complex flow with large deformation.



中文翻译:

一种具有自适应可变大小粒子的高效 MPS 细化技术

对于单分辨率粒子法,计算量大、精度高,通常需要大量的粒子,非常耗时。已经提出了具有可变尺寸粒子(VSP)的移动粒子半隐式(MPS)方法来细化局部域中的粒子。然而,在VSP-MPS方法中,细化区域在计算中是固定的,这使得难以精确捕捉移动和变形边界附近的流动。本研究开发了一种具有自适应可变尺寸粒子模型的 MPS 方法,称为 AVSP-MPS。在这种方法中,通过捕获移动和可变形的边界,可以动态地细化目标计算域。一个新的标准,分裂和合并只发生在整个粒子穿过细化界面时,建议避免不必要的粒子分裂和聚结的连锁反应。因此提高了该方法的稳定性。分区分辨率不是一个具体的值,而是VSP模型中的一个范围。分辨率范围选择不当会导致重复拆分和合并,导致计算效率低下。在这项研究中,作为优化结果,在不同分辨率的区域中获得了新的最大和最小体积,以提高多分辨率边界附近的收敛性。对溃坝、进水等若干案例进行了验证。数值结果表明,AVSP-MPS方法在处理大变形复杂流动时具有高效、灵活、稳定的细化技术。分区分辨率不是一个具体的值,而是VSP模型中的一个范围。分辨率范围选择不当会导致重复拆分和合并,导致计算效率低下。在这项研究中,作为优化结果,在不同分辨率的区域中获得了新的最大和最小体积,以提高多分辨率边界附近的收敛性。对溃坝、进水等若干案例进行了验证。数值结果表明,AVSP-MPS方法在处理大变形复杂流动时具有高效、灵活、稳定的细化技术。分区分辨率不是一个具体的值,而是VSP模型中的一个范围。分辨率范围选择不当会导致重复拆分和合并,导致计算效率低下。在这项研究中,作为优化结果,在不同分辨率的区域中获得了新的最大和最小体积,以提高多分辨率边界附近的收敛性。对溃坝、进水等若干案例进行了验证。数值结果表明,AVSP-MPS方法在处理大变形复杂流动时具有高效、灵活、稳定的细化技术。作为优化结果,获得了不同分辨率区域中新的最大和最小体积,以提高多分辨率边界附近的收敛性。对溃坝、进水等若干案例进行了验证。数值结果表明,AVSP-MPS方法在处理大变形复杂流动时具有高效、灵活、稳定的细化技术。作为优化结果,获得了不同分辨率区域中新的最大和最小体积,以提高多分辨率边界附近的收敛性。对溃坝、进水等若干案例进行了验证。数值结果表明,AVSP-MPS方法在处理大变形复杂流动时具有高效、灵活、稳定的细化技术。

更新日期:2022-08-04
down
wechat
bug