当前位置: X-MOL 学术Adv. Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Optothermally Programmable Liquids with Spatiotemporal Precision and Functional Complexity
Advanced Materials ( IF 29.4 ) Pub Date : 2022-08-02 , DOI: 10.1002/adma.202205563
Xixi Chen 1 , Tianli Wu 1 , Danmin Huang 2, 3 , Jiajia Zhou 3, 4 , Fengxiang Zhou 3, 4 , Mei Tu 2 , Yao Zhang 1 , Baojun Li 1 , Yuchao Li 1 , Lingxiang Jiang 3, 4
Affiliation  

Due to the intrinsic lack of spatial order and self-supported shape, liquids are often incompatible with precision manufacturing/processing and are potentially limited for advanced functionality. Herein, an optothermal strategy is developed to fully command phase-separated liquids with unprecedented spatiotemporal addressability. Specifically, a laser is focused onto an Au film to create a hot spot that locally demixes a temperature-responsive solution to produce a single optothermal droplet. Spatial precision is assured by the well-defined thermal field and temporal accuracy guaranteed by the fast heating and response rate. Time-multiplexed laser foci are deployed to engineer the thermal landscape as desired, which in turn dictates the formation/dissolution, positioning, shaping, and dynamic reconfiguration of the phase-separated liquids. Further, laser foci are programmed to orchestrate the liquid patterns in a time-continuous manner to produce liquid animations on the microscale with high fidelity. While focused lasers are routinely used to manipulate solid particles or to microfabricate solid materials, the current strategy embraces the merits of liquids and features functional complexity in information encryption, payload transportation, and reaction localization. The strategy is further applicable in scenarios such as subcellular organization of biomolecular condensates and programmable modulation of non-equilibrium systems.

中文翻译:

具有时空精度和功能复杂性的光热可编程液体

由于内在缺乏空间秩序和自支撑形状,液体通常与精密制造/加工不兼容,并且可能受限于高级功能。在此,开发了一种光热策略,以完全控制具有前所未有的时空寻址能力的相分离液体。具体来说,将激光聚焦在 Au 薄膜上以产生热点,该热点使温度响应溶液局部分层,从而产生单个光热液滴。空间精度由定义明确的热场保证,而时间精度由快速加热和响应速率保证。时间复用激光焦点被部署以根据需要设计热景观,这反过来决定了相分离液体的形成/溶解、定位、成形和动态重新配置。更远,激光焦点被编程为以时间连续的方式编排液体图案,以产生具有高保真度的微尺度液体动画。虽然聚焦激光通常用于操纵固体颗粒或微加工固体材料,但目前的策略包含了液体的优点,并在信息加密、有效载荷传输和反应定位方面具有功能复杂性。该策略进一步适用于生物分子凝聚物的亚细胞组织和非平衡系统的可编程调制等场景。目前的策略包含液体的优点,并在信息加密、有效载荷传输和反应定位方面具有功能复杂性。该策略进一步适用于生物分子凝聚物的亚细胞组织和非平衡系统的可编程调制等场景。目前的策略包含液体的优点,并在信息加密、有效载荷传输和反应定位方面具有功能复杂性。该策略进一步适用于生物分子凝聚物的亚细胞组织和非平衡系统的可编程调制等场景。
更新日期:2022-08-02
down
wechat
bug