当前位置: X-MOL 学术Appl. Catal. B Environ. Energy › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Unraveling photocatalytic electron transfer mechanism in polyoxometalate-encapsulated metal-organic frameworks for high-efficient CO2 reduction reaction
Applied Catalysis B: Environment and Energy ( IF 22.1 ) Pub Date : 2022-08-02 , DOI: 10.1016/j.apcatb.2022.121812
Jing Du, Yuan-Yuan Ma, Wen-Jing Cui, Si-Meng Zhang, Zhan-Gang Han, Run-Han Li, Xing-Qi Han, Wei Guan, Yong-Hui Wang, Ying-Qi Li, Yang Liu, Fei-Yang Yu, Kai-Qiang Wei, Hua-Qiao Tan, Zhen-Hui Kang, Yang-Guang Li

Unraveling the fundamental electron transfer mechanism is vital to deeply understand the heterogeneous photocatalysis process so as to develop new efficient photocatalysts. Herein, we present a deep investigation on the electron-transfer mechanism in heterogeneous photocatalytic CO2 reduction reaction by adopting a new type of structurally clear polyoxometalate-encapsulated metal-organic frameworks {Hn[Cd6L6Cl7]4[POM]8} (L=1,4-di(4H-1,2,4-triazol-4-yl)benzene, POM={SiW12}, {PW12} and {PMo12}, abbr. POM@CdMOF) as model photocatalysts. Transient photovoltage measurements indicate that various POM guests in photoactive CdMOF hosts show different electron transfer behaviors and charge separation pathways, inducing different photocatalytic activities. Thereinto, SiW12@CdMOF and PW12@CdMOF exhibit high photocatalytic CO2 reduction activities with CO yields of 4.35 mmolCO·molCd−1·h−1 and 3.60 mmolCO·molCd−1·h−1 comparably to most reported photocatalysts, whereas the performance of PMo12@CdMOF is poor. The in-situ transient photovoltage and DFT calculations revealed the key regulation role of different POM units on the interfacial electron transfer and the adsorption behavior of the important intermediates, thus describing a feasible route to efficiently perform the photocatalytic CO2 reduction. This work may provide a new and significant guideline for exploring high-performance photocatalysts.



中文翻译:

揭示多金属氧酸盐封装的金属有机框架中用于高效 CO2 还原反应的光催化电子转移机制

揭示基本的电子转移机制对于深入了解非均相光催化过程以开发新的高效光催化剂至关重要。在此,我们通过采用一种新型结构清晰的多金属氧酸盐包封的金属有机骨架{H n [Cd 6 L 6 Cl 7 ] 4 [POM] ,对非均相光催化CO 2还原反应中的电子转移机理进行了深入研究。8 } (L=1,4-di(4H-1,2,4-triazol-4-yl)苯, POM={SiW 12 }, {PW 12 } 和 {PMo 12 },简称POM@CdMOF ) 作为模型光催化剂。瞬态光电压测量表明,光活性 CdMOF 主体中的各种 POM 客体表现出不同的电子转移行为和电荷分离途径,从而诱导不同的光催化活性。其中,SiW 12 @CdMOFPW 12 @CdMOF表现出较高的光催化 CO 2还原活性,CO 产率为 4.35 mmol CO ·mol Cd -1 ·h -1和 3.60 mmol CO ·mol Cd -1 ·h -1报道了光催化剂,而PMo 12 @CdMOF的性能很穷。原位瞬态光电压和DFT计算揭示了不同POM单元对界面电子转移和重要中间体吸附行为的关键调控作用,从而为有效进行光催化CO 2还原提供了可行的途径。这项工作可能为探索高性能光催化剂提供新的重要指导。

更新日期:2022-08-02
down
wechat
bug