当前位置: X-MOL 学术Process Saf. Environ. Prot. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Accelerated reduction of nitrate by driving the manganese (Mn) cycle process with dissimilatory Mn reducing bacteria: Differential reduction pathways and cycling mechanisms
Process Safety and Environmental Protection ( IF 7.8 ) Pub Date : 2022-08-02 , DOI: 10.1016/j.psep.2022.08.001
Zhihong Gao , Junfeng Su , Amjad Ali , Yihan Bai , Yue Wang , Qiao Chang

The coupling of microbial dissimilatory manganese (Mn) reduction and nitrogen transformation in anaerobic environment affects the fate of many elemental geochemical cycles. A strain of dissimilatory manganese reducing bacteria (DMRB) named Pantoea sp. MFG10 was isolated for simultaneous reduction of Mn(IV) oxides and NO3--N to explore the differential reduction mechanism. The post-reaction precipitates were investigated for researching potential persistent products. The strain MFG10 could achieve 99.86% NO3--N removal (1.176 mg L−1 h−1) and 20.97 mg L−1 (0.583 mg L−1 h−1) free Mn(II) yield within 12 and 36 h, respectively. The transient intermediate Mn(III) formed after the reduction of strain MFG10 was utilized in the denitrification process. The restricted Mn reduction behavior in the NO3--N and manganese oxide co-reduction system led to the formation of large amounts of Mn(III) by single electron transfer of Mn(IV). Mn(III) acts as electron donor and re-oxidized to constitute a dynamic manganese cycle pathway. Thus, the addition of manganese oxide significantly improved the denitrification efficiency and the fast electron flow formed an abundant Mn(III) secondary minerals on the surface of the manganese oxide. This work will help to understand the more subtle environmental and process-based manganese cycle and inspire new strategies to develop efficient manganese recycling processes for groundwater pollution control.



中文翻译:

通过异化锰还原菌驱动锰 (Mn) 循环过程加速硝酸盐还原:差异还原途径和循环机制

厌氧环境中微生物异化锰(Mn)还原和氮转化的耦合影响了许多元素地球化学循环的命运。一种名为Pantoea sp.的异化锰还原菌 (DMRB) 。分离出 MFG10 用于同时还原 Mn(IV) 氧化物和 NO 3 - -N 以探索差异还原机制。研究了反应后沉淀物以研究潜在的持久性产物。菌株MFG10可以实现99.86%的NO 3 - -N去除(1.176 mg L -1 h -1)和20.97 mg L -1(0.583 mg L -1 h -1) 分别在 12 和 36 小时内产生游离 Mn(II)。菌株 MFG10 还原后形成的瞬态中间体 Mn(III) 用于反硝化过程。NO 3 - -N 和氧化锰共还原体系中受限的 Mn 还原行为导致通过 Mn(IV) 的单电子转移形成大量 Mn(III )。Mn(III) 充当电子供体并被重新氧化以构成动态锰循环途径。因此,添加氧化锰显着提高了反硝化效率和快速电子流在氧化锰表面形成丰富的Mn(III)次生矿物。这项工作将有助于了解更微妙的环境和基于过程的锰循环,并激发新的策略来开发有效的锰回收过程以控制地下水污染。

更新日期:2022-08-07
down
wechat
bug