当前位置: X-MOL 学术Energy Environ. Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Different interfacial reactivity of lithium metal chloride electrolytes with high voltage cathodes determines solid-state battery performance
Energy & Environmental Science ( IF 32.5 ) Pub Date : 2022-07-29 , DOI: 10.1039/d2ee00803c
Linda Nazar , Ivan Kochetkov , Tong-Tong Zuo , Raffael Ruess , Baltej Singh , Laidong Zhou , Kavish Kaup , Juergen Janek

A deep understanding of the interaction of the surface of cathode materials with solid electrolytes is crucial to design advanced solid-state batteries (SSBs). This is especially true for the new class of lithium metal chloride (Li-M-Cl) solid electrolytes which are receiving rapidly growing attention due to their very high oxidative stability (>4 V) in combination with good ionic conductivity that can enable long cell cycle life. While Li-M-Cl electrolytes typically contain resource-limited metals (M) such as indium or rare earths, work has focused on substituting M with more abundant elements such as zirconium. Via operando resistance measurements using intermittent current interruption we explore the dynamic evolution of the interphase at the surface of Ni-rich NCM85 or NCM111 cathode particles inside a working SSB with three different Li-(M1,M2)-Cl catholytes (Li3InCl6, Li2Sc1/3In1/3Cl4 and Li5/2Y1/2Zr1/2Cl6) to reveal the impact of the cationic metal substitution on the interfacial chemistry. We show that the metal plays a critical role in determining high voltage stability, contrary to prior assumptions. Using a combination of cyclic voltammetry and ultraviolet photoelectron spectroscopy measurements of the electronic band structure to assess oxidative stability; coupled with DFT calculations and ToF-SIMS to evaluate products formed at the interface at different upper cutoff potentials and degrees of delithiation, we are able to differentiate between electrochemical and chemical degradation. We find that Li2Sc1/3In1/3Cl4 yields the highest (and Li3InCl6 the lowest) stability against electrochemical oxidation, while Li5/2Y1/2Zr1/2Cl6 undergoes a detrimental chemical reaction with oxygen released from Ni-rich NCM85 at high potentials, resulting in fast capacity fading. Overall, our work establishes a platform for the metrics and an approach that can be utilized to efficiently evaluate the stability of new halide SEs in SSB cells.

中文翻译:

锂金属氯化物电解质与高压正极的不同界面反应性决定了固态电池的性能

深入了解正极材料表面与固体电解质的相互作用对于设计先进的固态电池(SSB)至关重要。对于新型锂金属氯化物 (Li-M-Cl) 固体电解质来说尤其如此,由于其非常高的氧化稳定性 (>4 V) 和良好的离子电导率可以实现长电池,因此它们正迅速受到越来越多的关注循环寿命。虽然 Li-M-Cl 电解质通常包含资源有限的金属 (M),例如铟或稀土,但工作重点是用更丰富的元素(例如锆)代替 M。通过操作使用间歇电流中断的电阻测量我们探索了在具有三种不同 Li-(M 1 ,M 2 )-Cl 阴极液 (Li 3 InCl 6 , Li 2 Sc 1/3 In 1/3 Cl 4和 Li 5/2 Y 1/2 Zr 1/2 Cl 6) 揭示阳离子金属取代对界面化学的影响。我们表明,与先前的假设相反,金属在确定高压稳定性方面起着关键作用。结合使用循环伏安法和紫外光电子能谱测量电子能带结构来评估氧化稳定性;结合 DFT 计算和 ToF-SIMS 来评估在不同上限截止电位和脱锂程度下在界面处形成的产物,我们能够区分电化学和化学降解。我们发现 Li 2 Sc 1/3 In 1/3 Cl 4产率最高(和 Li 3 InCl 6电化学氧化稳定性最低,而 Li 5/2 Y 1/2 Zr 1/2 Cl 6在高电位下与富镍 NCM85 释放的氧气发生有害的化学反应,导致容量快速衰减。总体而言,我们的工作为指标和方法建立了一个平台,可用于有效评估 SSB 电池中新卤化物 SEs 的稳定性。
更新日期:2022-07-29
down
wechat
bug