当前位置: X-MOL 学术J. Magnes. Alloys › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Microstructures and mechanical properties of titanium-reinforced magnesium matrix composites: Review and perspective
Journal of Magnesium and Alloys ( IF 17.6 ) Pub Date : 2022-07-27 , DOI: 10.1016/j.jma.2022.07.008
Hong Yang , Xianhua Chen , Guangsheng Huang , Jiangfeng Song , Jia She , Jun Tan , Kaihong Zheng , Yiming Jin , Bin Jiang , Fusheng Pan

Currently, many gratifying signs of progress have been made in magnesium (Mg) matrix composites (MMCs) by virtue of their high mechanical properties both at room and elevated temperatures. Although the commonly used reinforcements in MMCs are ceramic particles, they often provide improved yield and ultimate stresses by a significant loss in ductility. Therefore, hard metallic phases were introduced as alternative candidates for the manufacturing of MMCs, especially titanium (Ti). It has a high melting point, high Young's modulus, high plasticity, low level of mutual solubility with Mg matrix, and closer thermal expansion coefficient to that of Mg metal than that of ceramic particles. It is highly preferable to provide both high ultimate stress and ductility in Mg matrix. However, many critical challenges for the fabrication of Ti-reinforced MMCs remain, such as Ti's homogeneity, low recovery rate, and the optimization of interfacial bonding strength between Mg and Ti, etc. Meanwhile, different fabrication methods have various effects on the microstructures, mechanical properties, and the interfacial strength of Ti-reinforced MMCs. Hence, this review placed emphasis on the microstructural characteristics and mechanical properties of Ti-reinforced MMCs fabricated by different techniques. The influencing factors that govern the strengthening mechanisms were systematically compared and discussed. Future research trends, key issues, and prospects were also proposed to develop Ti-reinforced MMCs.



中文翻译:

钛增强镁基复合材料的微观结构和力学性能:回顾与展望

目前,镁(Mg)基复合材料(MMC)凭借其在室温和高温下的高机械性能,已经取得了许多可喜的进展迹象。尽管 MMC 中常用的增强材料是陶瓷颗粒,但它们通常会通过显着降低延展性来提高屈服强度和极限应力。因此,引入了硬金属相作为制造 MMC,尤其是钛 (Ti) 的替代候选物。它具有高熔点、高杨氏模量、高塑性、与镁基体的互溶性低、热膨胀系数比陶瓷颗粒更接近金属镁的特点。在镁基体中提供高极限应力和延展性是非常优选的。然而,Ti 增强 MMCs 的制备仍然存在许多关键挑战,如 Ti 的均匀性、低回收率以及优化 Mg 和 Ti 之间的界面结合强度等。同时,不同的制备方法对微观结构、力学性能有不同的影响。 ,以及 Ti 增强 MMCs 的界面强度。因此,本综述重点研究了通过不同技术制造的 Ti 增强 MMC 的微观结构特征和机械性能。系统地比较和讨论了控制强化机制的影响因素。还提出了发展Ti增强MMCs的未来研究趋势、关键问题和前景。同时,不同的制备方法对 Ti 增强 MMCs 的显微组织、力学性能和界面强度有不同的影响。因此,本综述重点研究了通过不同技术制造的 Ti 增强 MMC 的微观结构特征和机械性能。系统地比较和讨论了控制强化机制的影响因素。还提出了发展Ti增强MMCs的未来研究趋势、关键问题和前景。同时,不同的制备方法对 Ti 增强 MMCs 的显微组织、力学性能和界面强度有不同的影响。因此,本综述重点研究了通过不同技术制造的 Ti 增强 MMC 的微观结构特征和机械性能。系统地比较和讨论了控制强化机制的影响因素。还提出了发展Ti增强MMCs的未来研究趋势、关键问题和前景。系统地比较和讨论了控制强化机制的影响因素。还提出了发展Ti增强MMCs的未来研究趋势、关键问题和前景。系统地比较和讨论了控制强化机制的影响因素。还提出了发展Ti增强MMCs的未来研究趋势、关键问题和前景。

更新日期:2022-07-27
down
wechat
bug