当前位置: X-MOL 学术Langmuir › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Deciphering the Molecular Mechanism of Substrate-Induced Assembly of Gold Nanocube Arrays toward an Accelerated Electrocatalytic Effect Employing Heterogeneous Diffusion Field Confinement
Langmuir ( IF 3.9 ) Pub Date : 2022-07-27 , DOI: 10.1021/acs.langmuir.2c01001
Pawel Niedzialkowski 1 , Adrian Koterwa 1 , Adrian Olejnik 2, 3 , Artur Zielinski 4 , Karolina Gornicka 5 , Mateusz Brodowski 5 , Robert Bogdanowicz 2 , Jacek Ryl 5
Affiliation  

The complex electrocatalytic performance of gold nanocubes (AuNCs) is the focus of this work. The faceted shapes of AuNCs and the individual assembly processes at the electrode surfaces define the heterogeneous conditions for the purpose of electrocatalytic processes. Topographic and electron imaging demonstrated slightly rounded AuNC (average of 38 nm) assemblies with sizes of ≤1 μm, where the dominating patterns are (111) and (200) crystallographic planes. The AuNCs significantly impact the electrochemical performance of the investigated electrode [indium–tin oxide (ITO), glassy carbon (GC), and bulk gold] systems driven by surface electrons promoting the catalytic effect. Cyclic voltammetry in combination with scanning electrochemical microscopy allowed us to decipher the molecular mechanism of substrate-induced electrostatic assembly of gold nanocube arrays, revealing that the accelerated electrocatalytic effect should be attributed to the confinement of the heterogeneous diffusion fields with tremendous electrochemically active surface area variations. AuNC drop-casting at ITO, GC, and Au led to various mechanisms of heterogeneous charge transfer; only in the case of GC did the decoration significantly increase the electrochemically active surface area (EASA) and ferrocyanide redox kinetics. For ITO and Au substrates, AuNC drop-casting decreases system dimensionality rather than increasing the EASA, where Au–Au self-diffusion was also observed. Interactions of the gold, ITO, and GC surfaces with themselves and with surfactant CTAB and ferrocyanide molecules were investigated using density functional theory.

中文翻译:

利用非均相扩散场限制,破译衬底诱导的金纳米立方体阵列组装的分子机制,以实现加速电催化效应

金纳米立方体(AuNCs)的复杂电催化性能是这项工作的重点。AuNC 的多面形状和电极表面的单独组装过程定义了用于电催化过程的非均相条件。形貌和电子成像显示出略微圆润的 AuNC(平均 38 nm)组件,尺寸≤1 μm,其中主要图案是(111)和(200)晶面。AuNC 显着影响了由表面电子驱动的所研究电极 [氧化铟锡 (ITO)、玻璃碳 (GC) 和块状金] 系统的电化学性能,从而促进了催化效果。循环伏安法结合扫描电化学显微镜使我们能够破译底物诱导的金纳米立方体阵列静电组装的分子机制,揭示加速电催化效应应归因于具有巨大电化学活性表面积变化的异质扩散场的限制. 在 ITO、GC 和 Au 上的 AuNC 滴铸导致了各种异质电荷转移机制;只有在 GC 的情况下,装饰才显着增加电化学活性表面积 (EASA) 和亚铁氰化物氧化还原动力学。对于 ITO 和 Au 基板,AuNC 滴铸降低了系统维度,而不是增加了 EASA,其中还观察到了 Au-Au 自扩散。黄金、ITO、
更新日期:2022-07-27
down
wechat
bug