当前位置: X-MOL 学术Nucleic Acids Res. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Uncovering translation roadblocks during the development of a synthetic tRNA
Nucleic Acids Research ( IF 14.9 ) Pub Date : 2022-07-27 , DOI: 10.1093/nar/gkac576
Arjun Prabhakar 1, 2 , Natalie Krahn 3 , Jingji Zhang 1 , Oscar Vargas-Rodriguez 3 , Miri Krupkin 1 , Ziao Fu 4 , Francisco J Acosta-Reyes 4 , Xueliang Ge 5 , Junhong Choi 1 , Ana Crnković 3 , Måns Ehrenberg 5 , Elisabetta Viani Puglisi 1 , Dieter Söll 3, 6 , Joseph Puglisi 1
Affiliation  

Ribosomes are remarkable in their malleability to accept diverse aminoacyl-tRNA substrates from both the same organism and other organisms or domains of life. This is a critical feature of the ribosome that allows the use of orthogonal translation systems for genetic code expansion. Optimization of these orthogonal translation systems generally involves focusing on the compatibility of the tRNA, aminoacyl-tRNA synthetase, and a non-canonical amino acid with each other. As we expand the diversity of tRNAs used to include non-canonical structures, the question arises as to the tRNA suitability on the ribosome. Specifically, we investigated the ribosomal translation of allo-tRNAUTu1, a uniquely shaped (9/3) tRNA exploited for site-specific selenocysteine insertion, using single-molecule fluorescence. With this technique we identified ribosomal disassembly occurring from translocation of allo-tRNAUTu1 from the A to the P site. Using cryo-EM to capture the tRNA on the ribosome, we pinpointed a distinct tertiary interaction preventing fluid translocation. Through a single nucleotide mutation, we disrupted this tertiary interaction and relieved the translation roadblock. With the continued diversification of genetic code expansion, our work highlights a targeted approach to optimize translation by distinct tRNAs as they move through the ribosome.

中文翻译:

发现合成 tRNA 开发过程中的翻译障碍

核糖体在接受来自同一生物体和其他生物体或生命领域的不同氨酰 tRNA 底物方面具有非凡的可塑性。这是核糖体的一个关键特征,允许使用正交翻译系统进行遗传密码扩展。这些正交翻译系统的优化通常涉及关注 tRNA、氨酰-tRNA 合成酶和非规范氨基酸之间的相容性。当我们扩大用于包括非规范结构的 tRNA 的多样性时,出现了关于 tRNA 在核糖体上的适用性的问题。具体来说,我们使用单分子荧光研究了 allo-tRNAUTu1 的核糖体翻译,allo-tRNAUTu1 是一种形状独特 (9/3) 的 tRNA,用于位点特异性硒代半胱氨酸插入。通过这种技术,我们确定了 allo-tRNAUTu1 从 A 位点易位到 P 位点时发生的核糖体分解。使用冷冻电镜捕获核糖体上的 tRNA,我们确定了一种独特的三级相互作用,可防止液体移位。通过单核苷酸突变,我们破坏了这种三级相互作用并解除了翻译障碍。随着遗传密码扩展的持续多样化,我们的工作强调了一种有针对性的方法,可以在不同的 tRNA 穿过核糖体时优化翻译。我们破坏了这种第三级互动并解除了翻译障碍。随着遗传密码扩展的持续多样化,我们的工作强调了一种有针对性的方法,可以在不同的 tRNA 穿过核糖体时优化翻译。我们破坏了这种第三级互动并解除了翻译障碍。随着遗传密码扩展的持续多样化,我们的工作强调了一种有针对性的方法,可以在不同的 tRNA 穿过核糖体时优化翻译。
更新日期:2022-07-27
down
wechat
bug