当前位置: X-MOL 学术Can. J. Chem. Eng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Experimental methods in chemical engineering: Computational fluid dynamics/finite volume method—CFD/FVM
The Canadian Journal of Chemical Engineering ( IF 2.1 ) Pub Date : 2022-07-25 , DOI: 10.1002/cjce.24571
Laurens Van Hoecke 1 , Dieter Boeye 1 , Arturo Gonzalez‐Quiroga 2 , Gregory S. Patience 3 , Patrice Perreault 4, 5
Affiliation  

Computational fluid dynamics (CFD) applies numerical methods to solve transport phenomena problems. These include, for example, problems related to fluid flow comprising the Navier–Stokes transport equations for either compressible or incompressible fluids, together with turbulence models and continuity equations for single and multi-component (reacting and inert) systems. The design space is first segmented into discrete volume elements (meshing). The finite volume method, the subject of this article, discretizes the equations in time and space to produce a set of non-linear algebraic expressions that are assigned to each volume element—cell. The system of equations is solved iteratively with algorithms like the semi-implicit method for pressure-linked equations (SIMPLE) and the pressure implicit splitting of operators (PISO). CFD is especially useful for testing multiple design elements because it is often faster and cheaper than experiments. The downside is that this numerical method is based on models that require validation to check their accuracy. According to a bibliometric analysis, the broad research domains in chemical engineering include: (1) dynamics and CFD-DEM, (2) fluid flow, heat transfer, and turbulence, (3) mass transfer and combustion, (4) ventilation and the environment, and (5) design and optimization. Here, we review the basic theoretical concepts of CFD and illustrate how to set up a problem in the open-source software OpenFOAM to isomerize n-butane to i-butane in a notched reactor under turbulent conditions. We simulated the problem with 1000, 4000, and 16 000 cells. According to the Richardson extrapolation, the simulation underestimates the adiabatic temperature rise by 7% with 16 000 cells.

中文翻译:

化工实验方法:计算流体力学/有限体积法—CFD/FVM

计算流体动力学 (CFD) 应用数值方法来解决传输现象问题。例如,这些问题包括与流体流动相关的问题,包括可压缩或不可压缩流体的 Navier-Stokes 输运方程,以及单组分和多组分(反应和惰性)系统的湍流模型和连续性方程。设计空间首先被分割成离散的体积元素(网格划分)。有限体积法是本文的主题,它将时间和空间中的方程离散化以生成一组分配给每个体积元素(单元)的非线性代数表达式。方程组通过压力关联方程的半隐式方法 (SIMPLE) 和算子的压力隐式分裂 (PISO) 等算法迭代求解。CFD 对于测试多个设计元素特别有用,因为它通常比实验更快、更便宜。缺点是这种数值方法基于需要验证以检查其准确性的模型。根据文献计量分析,化学工程的广泛研究领域包括:(1) 动力学和 CFD-DEM,(2) 流体流动、传热和湍流,(3) 传质和燃烧,(4) 通风和环境,以及(5)设计和优化。在这里,我们回顾了CFD的基本理论概念,并举例说明了如何在开源软件OpenFOAM中设置一个问题进行异构化 根据文献计量分析,化学工程的广泛研究领域包括:(1) 动力学和 CFD-DEM,(2) 流体流动、传热和湍流,(3) 传质和燃烧,(4) 通风和环境,以及(5)设计和优化。在这里,我们回顾了CFD的基本理论概念,并举例说明了如何在开源软件OpenFOAM中设置一个问题进行异构化 根据文献计量分析,化学工程的广泛研究领域包括:(1) 动力学和 CFD-DEM,(2) 流体流动、传热和湍流,(3) 传质和燃烧,(4) 通风和环境,以及(5)设计和优化。在这里,我们回顾了CFD的基本理论概念,并举例说明了如何在开源软件OpenFOAM中设置一个问题进行异构化在湍流条件下,在缺口反应器中将丁烷转化为异丁烷。我们模拟了 1000、4000 和 16000 个单元格的问题。根据 Richardson 外推法,模拟低估了 16000 个电池的绝热温升 7%。
更新日期:2022-07-25
down
wechat
bug