当前位置: X-MOL 学术Eng. Appl. Comput. Fluid Mech. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
CFD-aided approach of modelling and dynamic characteristic optimization for a highly nonlinear auxiliary braking system
Engineering Applications of Computational Fluid Mechanics ( IF 6.1 ) Pub Date : 2022-07-25 , DOI: 10.1080/19942060.2022.2103589
Konghua Yang 1, 2 , Xichun Guan 3 , Xiaoli Zhang 3 , Chunbao Liu 1, 2
Affiliation  

It is a considerable challenge to develop a mathematical method for modelling the coupling relationship between the control signal and braking performance in the design and optimization, especially with a highly nonlinear system. The present study thus establishes an integrated CFD-aided method, elaborately proposed based on a 1D/3D co-simulation to accomplish a goal of collaborative calculation between multi-physics fields, and conducting the braking and thermal properties that changes dynamically with the control signal. In particular, the 3D model is actually a multi-domain coupling CFD transient calculation, and the 1D model provides the dynamic boundary conditions. These results manifest some interesting issues, such as modelling the prediction interaction between the isolated control signal and dynamic braking capability. The synergies of the blade agitation and centrifugal force in the multi-phases development affect the oil-filling control and braking generation. The control pressure (Pair) and throttle area (Aout) are predominated in enhancing braking torque, shortening response time, and improving heat dissipation efficiency. The operations of Pair ≤ 3.2 bar and Aout ≥ 64π mm2 ensure a safe and reliable design and then optimize braking and control characteristics. The resulting maximum braking torque is 4070Nm, and the outlet oil temperature is reduced to 138°C.



中文翻译:

高度非线性辅助制动系统的 CFD 辅助建模和动态特性优化方法

在设计和优化过程中,特别是对于高度非线性系统,开发一种数学方法来模拟控制信号与制动性能之间的耦合关系是一项相当大的挑战。因此,本研究建立了一种基于 1D/3D 协同仿真的集成 CFD 辅助方法,以实现多物理场之间协同计算的目标,并进行随控制信号动态变化的制动和热特性。 . 特别是,3D模型实际上是多域耦合CFD瞬态计算,1D模型提供了动态边界条件。这些结果表明了一些有趣的问题,例如对隔离控制信号和动态制动能力之间的预测交互进行建模。叶片搅拌和离心力在多阶段发展中的协同作用影响注油控制和制动产生。控制压力(P air)和节气门面积(A out)在提高制动扭矩、缩短响应时间和提高散热效率方面占主导地位。P air  ≤ 3.2 bar 和A out  ≥ 64π mm 2的操作确保了安全可靠的设计,进而优化了制动和控制特性。由此产生的最大制动扭矩为4070Nm,出口油温降至138°C。

更新日期:2022-07-25
down
wechat
bug