当前位置: X-MOL 学术Plant Biotech. J. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Genetic modification of flavone biosynthesis in rice enhances biofilm formation of soil diazotrophic bacteria and biological nitrogen fixation
Plant Biotechnology Journal ( IF 13.8 ) Pub Date : 2022-07-23 , DOI: 10.1111/pbi.13894
Dawei Yan 1 , Hiromi Tajima 1 , Lauren C Cline 2 , Reedmond Y Fong 3 , Javier I Ottaviani 3, 4 , Howard-Yana Shapiro 1 , Eduardo Blumwald 1
Affiliation  

Improving biological nitrogen fixation (BNF) in cereal crops is a long-sought objective; however, no successful modification of cereal crops showing increased BNF has been reported. Here, we described a novel approach in which rice plants were modified to increase the production of compounds that stimulated biofilm formation in soil diazotrophic bacteria, promoted bacterial colonization of plant tissues and improved BNF with increased grain yield at limiting soil nitrogen contents. We first used a chemical screening to identify plant-produced compounds that induced biofilm formation in nitrogen-fixing bacteria and demonstrated that apigenin and other flavones induced BNF. We then used CRISPR-based gene editing targeting apigenin breakdown in rice, increasing plant apigenin contents and apigenin root exudation. When grown at limiting soil nitrogen conditions, modified rice plants displayed increased grain yield. Biofilm production also modified the root microbiome structure, favouring the enrichment of diazotrophic bacteria recruitment. Our results support the manipulation of the flavone biosynthetic pathway as a feasible strategy for the induction of biological nitrogen fixation in cereals and a reduction in the use of inorganic nitrogen fertilizers.

中文翻译:

水稻黄酮生物合成的基因改造促进土壤固氮菌的生物膜形成和生物固氮

改善谷类作物的生物固氮(BNF)是一个长期追求的目标;然而,尚未报告显示 BNF 增加的谷类作物的成功改良。在这里,我们描述了一种新方法,其中对水稻植物进行了改良,以增加刺激土壤固氮细菌中生物膜形成的化合物的产生,促进植物组织的细菌定殖并改善 BNF,同时在限制土壤氮含量的情况下增加谷物产量。我们首先使用化学筛选来鉴定诱导固氮细菌生物膜形成的植物产生的化合物,并证明芹菜素和其他黄酮诱导 BNF。然后,我们使用基于 CRISPR 的基因编辑靶向水稻中的芹菜素分解,增加植物芹菜素含量和芹菜素根系分泌。当在有限的土壤氮条件下生长时,改良水稻植株表现出增加的谷物产量。生物膜的产生也改变了根系微生物组的结构,有利于固氮细菌的富集。我们的结果支持将黄酮生物合成途径作为诱导谷物生物固氮和减少无机氮肥使用的可行策略。
更新日期:2022-07-23
down
wechat
bug