当前位置: X-MOL 学术Comput. Math. Appl. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
HomPINNs: Homotopy physics-informed neural networks for learning multiple solutions of nonlinear elliptic differential equations
Computers & Mathematics with Applications ( IF 2.9 ) Pub Date : 2022-07-20 , DOI: 10.1016/j.camwa.2022.07.002
Yao Huang , Wenrui Hao , Guang Lin

Physics-informed neural networks (PINNs) based machine learning is an emerging framework for solving nonlinear differential equations. However, due to the implicit regularity of neural network structure, PINNs can only find the flattest solution in most cases by minimizing the loss functions. In this paper, we combine PINNs with the homotopy continuation method, a classical numerical method to compute isolated roots of polynomial systems, and propose a new deep learning framework, named homotopy physics-informed neural networks (HomPINNs), for solving multiple solutions of nonlinear elliptic differential equations. The implementation of an HomPINN is a homotopy process that is composed of the training of a fully connected neural network, named the starting neural network, and training processes of several PINNs with different tracking parameters. The starting neural network is to approximate a starting function constructed by the trivial solutions, while other PINNs are to minimize the loss functions defined by boundary condition and homotopy functions, varying with different tracking parameters. These training processes are regraded as different steps of a homotopy process, and a PINN is initialized by the well-trained neural network of the previous step, while the first starting neural network is initialized using the default initialization method. Several numerical examples are presented to show the efficiency of our proposed HomPINNs, including reaction-diffusion equations with a heart-shaped domain.



中文翻译:

HomPINNs:用于学习非线性椭圆微分方程多个解的同伦物理信息神经网络

基于物理信息神经网络 (PINN) 的机器学习是用于求解非线性微分方程的新兴框架。然而,由于神经网络结构的隐含规律性,PINNs 在大多数情况下只能通过最小化损失函数来找到最平坦的解决方案。在本文中,我们将 PINN 与同伦延拓法(一种计算多项式系统孤立根的经典数值方法)相结合,并提出了一种新的深度学习框架,称为同伦物理信息神经网络 (HomPINNs),用于求解非线性的多重解椭圆微分方程。HomPINN 的实现是一个同伦过程,它由一个全连接的神经网络(称为起始神经网络)的训练和几个具有不同跟踪参数的 PINN 的训练过程组成。起始神经网络是逼近由平凡解构造的起始函数,而其他 PINN 是最小化由边界条件和同伦函数定义的损失函数,随着不同的跟踪参数而变化。这些训练过程被重新划分为同伦过程的不同步骤,一个PINN由上一步训练好的神经网络初始化,而第一个起始神经网络使用默认的初始化方法初始化。给出了几个数值例子来展示我们提出的 HomPINN 的效率,包括具有心形域的反应扩散方程。而其他 PINN 是最小化由边界条件和同伦函数定义的损失函数,随着不同的跟踪参数而变化。这些训练过程被重新划分为同伦过程的不同步骤,一个PINN由上一步训练好的神经网络初始化,而第一个起始神经网络使用默认的初始化方法初始化。给出了几个数值例子来展示我们提出的 HomPINN 的效率,包括具有心形域的反应扩散方程。而其他 PINN 是最小化由边界条件和同伦函数定义的损失函数,随着不同的跟踪参数而变化。这些训练过程被重新划分为同伦过程的不同步骤,一个PINN由上一步训练好的神经网络初始化,而第一个起始神经网络使用默认的初始化方法初始化。给出了几个数值例子来展示我们提出的 HomPINN 的效率,包括具有心形域的反应扩散方程。而第一个起始神经网络使用默认初始化方法进行初始化。给出了几个数值例子来展示我们提出的 HomPINN 的效率,包括具有心形域的反应扩散方程。而第一个起始神经网络使用默认初始化方法进行初始化。给出了几个数值例子来展示我们提出的 HomPINN 的效率,包括具有心形域的反应扩散方程。

更新日期:2022-07-21
down
wechat
bug